Gate-based single-shot readout of spins in silicon

被引:131
作者
West, Anderson [1 ]
Hensen, Bas [1 ]
Jouan, Alexis [2 ]
Tanttu, Tuomo [1 ]
Yang, Chih-Hwan [1 ]
Rossi, Alessandro [3 ]
Gonzalez-Zalba, M. Fernando [4 ]
Hudson, Fay [1 ]
Morello, Andrea [1 ]
Reilly, David J. [2 ,5 ]
Dzurak, Andrew S. [1 ]
机构
[1] Univ New South Wales, Ctr Quantum Computat & Commun Technol, Sch Elect Engn & Telecommun, Sydney, NSW, Australia
[2] Univ Sydney, ARC Ctr Excellence Engn Quantum Syst, Sch Phys, Sydney, NSW, Australia
[3] Univ Cambridge, Cavendish Lab, Cambridge, England
[4] Hitachi Cambridge Lab, Cambridge, England
[5] Univ Sydney, Microsoft Corp, Stn Q Sydney, Sydney, NSW, Australia
基金
欧盟地平线“2020”; 澳大利亚研究理事会;
关键词
QUBIT;
D O I
10.1038/s41565-019-0400-7
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electron spins in silicon quantum dots provide a promising route towards realizing the large number of coupled qubits required for a useful quantum processor(1-7). For the implementation of quantum algorithms and error detection(8-10), qubit measurements are ideally performed in a single shot, which is presently achieved using on-chip charge sensors, capacitively coupled to the quantum dots(11). However, as the number of qubits is increased, this approach becomes impractical due to the footprint and complexity of the charge sensors, combined with the required proximity to the quantum dots(12). Alternatively, the spin state can be measured directly by detecting the complex impedance of spin-dependent electron tunnelling between quantum dots(13-15). This can be achieved using radiofrequency reflectometry on a single gate electrode defining the quantum dot itself(5-19), significantly reducing the gate count and architectural complexity, but thus far it has not been possible to achieve single-shot spin readout using this technique. Here, we detect single electron tunnelling in a double quantum dot and demonstrate that gate-based sensing can be used to read out the electron spin state in a single shot, with an average readout fidelity of 73%. The result demonstrates a key step towards the readout of many spin qubits in parallel, using a compact gate design that will be needed for a large-scale semiconductor quantum processor.
引用
收藏
页码:437 / +
页数:7
相关论文
共 27 条
[21]   Natural Embedding of the Stokes Parameters of Polarimetric Synthetic Aperture Radar Images in a Gate-Based Quantum Computer [J].
Otgonbaatar, Soronzonbold ;
Datcu, Mihai .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[22]   Computational Assessment of Silicon Quantum Gate Based on Detuning Mechanism for Quantum Computing [J].
Wu, Tong ;
Guo, Jing .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (12) :5530-5536
[23]   Integration of tunnel-coupled double nanocrystalline silicon quantum dots with a multiple-gate single-electron transistor [J].
Kawata, Yoshiyuki ;
Khalafalla, Mohammed A. H. ;
Usami, Kouichi ;
Tsuchiya, Yoshishige ;
Mizuta, Hiroshi ;
Oda, Shunri .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (7A) :4386-4389
[24]   A silicon-based single-electron interferometer coupled to a fermionic sea [J].
Chatterjee, Anasua ;
Shevchenko, Sergey N. ;
Barraud, Sylvain ;
Otxoa, Ruben M. ;
Nori, Franco ;
Morton, John J. L. ;
Gonzalez-Zalba, M. Fernando .
PHYSICAL REVIEW B, 2018, 97 (04)
[25]   Design and Modelling of Silicon Quantum Dot Based Single Qubit Spin Quantum Gates [J].
Hilal A. Bhat ;
Gul Faroz A. Malik ;
Farooq A. Khanday .
International Journal of Theoretical Physics, 61
[26]   Design and Modelling of Silicon Quantum Dot Based Single Qubit Spin Quantum Gates [J].
Bhat, Hilal A. ;
Malik, Gul Faroz A. ;
Khanday, Farooq A. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2022, 61 (11)
[27]   An Integrated Silicon MOS Single-Electron Transistor Charge Sensor for Spin-Based Quantum Information Processing [J].
Stuyck, Nard Dumoulin ;
Li, Roy ;
Kubicek, Stefan ;
Mohiyaddin, Fahd A. ;
Jussot, Julien ;
Chan, B. T. ;
Simion, George ;
Govoreanu, Bogdan ;
Heyns, Marc ;
Radu, Iuliana .
IEEE ELECTRON DEVICE LETTERS, 2020, 41 (08) :1253-1256