ADAPTIVE FINITE ELEMENT METHOD FOR SHAPE OPTIMIZATION

被引:28
|
作者
Morin, Pedro [1 ,2 ]
Nochetto, Ricardo H. [3 ,4 ]
Pauletti, Miguel S. [5 ,6 ]
Verani, Marco [7 ]
机构
[1] Univ Nacl Litoral, CONICET, Dept Matemat, Fac Ingn Quim, Santa Fe, Argentina
[2] Univ Nacl Litoral, CONICET, Inst Matemat Aplicada Litoral, Santa Fe, Argentina
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[4] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[5] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[6] Texas A&M Univ, Inst Appl Math & Computat Sci, College Stn, TX 77843 USA
[7] Politecn Milan, Dipartimento Matemat F Brioschi, MOX Modelling & Sci Comp, I-20133 Milan, Italy
基金
美国国家科学基金会;
关键词
Shape optimization; adaptivity; mesh refinement/coarsening; smoothing; LAPLACE-BELTRAMI OPERATOR; ERROR ANALYSIS; DESIGN; GRAPHS;
D O I
10.1051/cocv/2011192
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity.
引用
收藏
页码:1122 / 1149
页数:28
相关论文
共 50 条
  • [41] Adaptive SQP Method for Shape Optimization
    Morin, P.
    Nochetto, R. H.
    Pauletti, M. S.
    Verani, M.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 663 - 673
  • [42] Shape optimization of BLDC motor using 3-D finite element method
    Wang, S
    Kang, J
    IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (04) : 1119 - 1123
  • [43] Shape modification of the Boston brace using a finite-element method with topology optimization
    Liao, Yi-Ching
    Feng, Chi-Kuang
    Tsai, Mei-Wun
    Chen, Chen-Sheng
    Cheng, Cheng-Kung
    Ou, Yu-Chih
    SPINE, 2007, 32 (26) : 3014 - 3019
  • [44] Shape optimization of nonlinear magnetostatic problems using the finite element method embedded in optimizer
    Ovacik, L
    Salon, SJ
    IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (05) : 4323 - 4325
  • [45] SHAPE OPTIMIZATION IN TWO-DIMENSIONAL ELASTICITY BY THE DUAL FINITE-ELEMENT METHOD
    HLAVACEK, I
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1987, 21 (01): : 63 - 92
  • [46] Shape optimization of nonlinear magnetostatic problems using the finite element method embedded in optimizer
    Rensselaer Polytechnic Inst, Troy, United States
    IEEE Trans Magn, 5 pt 2 (4323-4325):
  • [47] A finite element method with composite shape functions
    Sadeghirad, Alireza
    Astaneh, Ali Vaziri
    ENGINEERING COMPUTATIONS, 2011, 28 (3-4) : 389 - 422
  • [48] Finite element method for shape memory materials
    Pan, YS
    Liu, AR
    Zhou, BK
    Chen, DP
    COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 1419 - 1424
  • [49] Finite Element Analysis for Optimization of Arch Dam Shape
    Li Jun
    Wang Yuan-hui
    PROCEEDINGS OF THE 2016 2ND WORKSHOP ON ADVANCED RESEARCH AND TECHNOLOGY IN INDUSTRY APPLICATIONS, 2016, 81 : 809 - 812
  • [50] Proposal of effective finite element method using domain decomposition method and its application to shape optimization
    Sekine, Hideki
    Aoki, Daisuke
    Nippon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2002, 68 (05): : 693 - 700