ADAPTIVE FINITE ELEMENT METHOD FOR SHAPE OPTIMIZATION

被引:28
|
作者
Morin, Pedro [1 ,2 ]
Nochetto, Ricardo H. [3 ,4 ]
Pauletti, Miguel S. [5 ,6 ]
Verani, Marco [7 ]
机构
[1] Univ Nacl Litoral, CONICET, Dept Matemat, Fac Ingn Quim, Santa Fe, Argentina
[2] Univ Nacl Litoral, CONICET, Inst Matemat Aplicada Litoral, Santa Fe, Argentina
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[4] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[5] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[6] Texas A&M Univ, Inst Appl Math & Computat Sci, College Stn, TX 77843 USA
[7] Politecn Milan, Dipartimento Matemat F Brioschi, MOX Modelling & Sci Comp, I-20133 Milan, Italy
基金
美国国家科学基金会;
关键词
Shape optimization; adaptivity; mesh refinement/coarsening; smoothing; LAPLACE-BELTRAMI OPERATOR; ERROR ANALYSIS; DESIGN; GRAPHS;
D O I
10.1051/cocv/2011192
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity.
引用
收藏
页码:1122 / 1149
页数:28
相关论文
共 50 条
  • [31] An adaptive finite element method for magnetohydrodynamics
    Lankalapalli, S.
    Flaherty, J. E.
    Shephard, M. S.
    Strauss, H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (01) : 363 - 381
  • [32] An adaptive finite element method for magnetohydrodynamics
    Strauss, HR
    Longcope, DW
    JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (02) : 318 - 336
  • [33] An optimal adaptive finite element method
    Stevenson, R
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (05) : 2188 - 2217
  • [34] AN ADAPTIVE MULTISCALE FINITE ELEMENT METHOD
    Henning, Patrick
    Ohlberger, Mario
    Schweizer, Ben
    MULTISCALE MODELING & SIMULATION, 2014, 12 (03): : 1078 - 1107
  • [35] A polytree-based adaptive polygonal finite element method for topology optimization
    Nguyen-Xuan, H.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 110 (10) : 972 - 1000
  • [36] The multilevel finite element method for adaptive mesh optimization and visualization of volume data
    Grosso, R
    Lurig, C
    Ertl, T
    VISUALIZATION '97 - PROCEEDINGS, 1997, : 387 - +
  • [37] Improved Adaptive Multi-Objective Particle Swarm Optimization of Sensor Layout for Shape Sensing with Inverse Finite Element Method
    Li, Xiaohan
    Niu, Shengtao
    Bao, Hong
    Hu, Naigang
    SENSORS, 2022, 22 (14)
  • [38] Shape optimization with virtual element method
    Feng, Fang
    Yang, Hui
    Zhu, Shengfeng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 131
  • [39] Adaptive finite element methods for optimization problems
    Becker, R
    Kapp, H
    Rannacher, R
    NUMERICAL ANALYSIS 1999, 2000, 420 : 21 - 42
  • [40] Smoothed finite element and genetic algorithm based optimization for shape adaptive composite marine propellers
    Herath, Manudha T.
    Natarajan, Sundararajan
    Prusty, B. Gangadhara
    St John, Nigel
    COMPOSITE STRUCTURES, 2014, 109 : 189 - 197