ADAPTIVE FINITE ELEMENT METHOD FOR SHAPE OPTIMIZATION

被引:28
|
作者
Morin, Pedro [1 ,2 ]
Nochetto, Ricardo H. [3 ,4 ]
Pauletti, Miguel S. [5 ,6 ]
Verani, Marco [7 ]
机构
[1] Univ Nacl Litoral, CONICET, Dept Matemat, Fac Ingn Quim, Santa Fe, Argentina
[2] Univ Nacl Litoral, CONICET, Inst Matemat Aplicada Litoral, Santa Fe, Argentina
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[4] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[5] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[6] Texas A&M Univ, Inst Appl Math & Computat Sci, College Stn, TX 77843 USA
[7] Politecn Milan, Dipartimento Matemat F Brioschi, MOX Modelling & Sci Comp, I-20133 Milan, Italy
基金
美国国家科学基金会;
关键词
Shape optimization; adaptivity; mesh refinement/coarsening; smoothing; LAPLACE-BELTRAMI OPERATOR; ERROR ANALYSIS; DESIGN; GRAPHS;
D O I
10.1051/cocv/2011192
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity.
引用
收藏
页码:1122 / 1149
页数:28
相关论文
共 50 条
  • [21] Shape optimization for Stokes flows using sensitivity analysis and finite element method
    Ta Thi Thanh Mai
    Le Van Chien
    Pham Ha Thanh
    APPLIED NUMERICAL MATHEMATICS, 2018, 126 : 160 - 179
  • [22] Optimization of initial blank shape predicted based on inverse finite element method
    Parsa, Mohammad Habibi
    Pournia, Payam
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2007, 43 (03) : 218 - 233
  • [23] SHAPE OPTIMIZATION USING THE FINITE ELEMENT METHOD ON MULTIPLE MESHES WITH NITSCHE COUPLING
    Dokken, Jorgen S.
    Funke, Simon W.
    Johansson, August
    Schmidt, Stephan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (03): : A1923 - A1948
  • [24] A stabilized finite element method for shape optimization in low Reynolds number flows
    Srinath, D. N.
    Mittal, S.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 54 (12) : 1451 - 1471
  • [25] MULTI-PARAMETER STRUCTURAL SHAPE OPTIMIZATION BY FINITE-ELEMENT METHOD
    DEMS, K
    MROZ, Z
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 13 (02) : 247 - 263
  • [26] A gradientless finite element procedure for shape optimization
    Heller, M
    Kaye, R
    Rose, LRF
    JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 1999, 34 (05): : 323 - 336
  • [27] Shape optimization of acoustic devices using the Scaled Boundary Finite Element Method
    Khajah, Tahsin
    Liu, Lei
    Song, Chongmin
    Gravenkamp, Hauke
    WAVE MOTION, 2021, 104
  • [28] SHAPE OPTIMIZATION - FINITE-ELEMENT EXAMPLE
    SPILLERS, WR
    SINGH, S
    JOURNAL OF THE STRUCTURAL DIVISION-ASCE, 1981, 107 (10): : 2015 - 2028
  • [29] An adaptive T-spline finite cell method for structural shape optimization
    Liang Chen
    Weihong Zhang
    Liang Meng
    Lipeng Jiu
    Shengqi Feng
    Structural and Multidisciplinary Optimization, 2020, 61 : 1857 - 1876
  • [30] An adaptive T-spline finite cell method for structural shape optimization
    Chen, Liang
    Zhang, Weihong
    Meng, Liang
    Jiu, Lipeng
    Feng, Shengqi
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 61 (05) : 1857 - 1876