Entanglement spectrum classification of Cn-invariant noninteracting topological insulators in two dimensions

被引:71
作者
Fang, Chen [1 ]
Gilbert, Matthew J. [2 ,3 ]
Bernevig, B. Andrei [1 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[3] Univ Illinois, Micro & Nanotechnol Lab, Urbana, IL 61801 USA
关键词
D O I
10.1103/PhysRevB.87.035119
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the single-particle entanglement spectrum in 2D topological insulators which possess n-fold rotation symmetry. By defining a series of special choices of subsystems on which the entanglement is calculated, or real space cuts, we find that the number of protected in-gap states for each type of these real space cuts is a quantum number indexing (if any) nontrivial topology in these insulators. We explicitly show that the number of protected in-gap states is determined by a Z(n) index (z(1),..., z(n)), where z(m) is the number of occupied states that transform according to mth one-dimensional representation of the C-n point group. We find that for a space cut separating 1/pth of the system, the entanglement spectrum contains in-gap states pinned in an interval of entanglement eigenvalues [1/p, 1 - 1/p]. We determine the number of such in-gap states for an exhaustive variety of cuts, in terms of the Z(n) index. Furthermore, we show that in a homogeneous system, the Z(n) index can be determined through an evaluation of the eigenvalues of point-group symmetry operators at all high-symmetry points in the Brillouin zone. When disordered n-fold rotationally symmetric systems are considered, we find that the number of protected in-gap states is identical to that in the clean limit as long as the disorder preserves the underlying point-group symmetry and does not close the bulk insulating gap. DOI:10.1103/PhysRevB.87.035119
引用
收藏
页数:17
相关论文
共 49 条
[1]   Trace index and spectral flow in the entanglement spectrum of topological insulators [J].
Alexandradinata, A. ;
Hughes, Taylor L. ;
Bernevig, B. Andrei .
PHYSICAL REVIEW B, 2011, 84 (19)
[2]  
Alexandradinata A., ARXIV12084234
[3]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[4]   Bulk-edge correspondence in entanglement spectra [J].
Chandran, Anushya ;
Hermanns, M. ;
Regnault, N. ;
Bernevig, B. Andrei .
PHYSICAL REVIEW B, 2011, 84 (20)
[5]   Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order [J].
Chen, Xie ;
Gu, Zheng-Cheng ;
Wen, Xiao-Gang .
PHYSICAL REVIEW B, 2010, 82 (15)
[6]   Multi-Weyl Topological Semimetals Stabilized by Point Group Symmetry [J].
Fang, Chen ;
Gilbert, Matthew J. ;
Dai, Xi ;
Bernevig, B. Andrei .
PHYSICAL REVIEW LETTERS, 2012, 108 (26)
[7]   Topological phases of fermions in one dimension [J].
Fidkowski, Lukasz ;
Kitaev, Alexei .
PHYSICAL REVIEW B, 2011, 83 (07)
[8]   Entanglement Spectrum of Topological Insulators and Superconductors [J].
Fidkowski, Lukasz .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[9]   Topological insulators in three dimensions [J].
Fu, Liang ;
Kane, C. L. ;
Mele, E. J. .
PHYSICAL REVIEW LETTERS, 2007, 98 (10)
[10]   Topological Crystalline Insulators [J].
Fu, Liang .
PHYSICAL REVIEW LETTERS, 2011, 106 (10)