Dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one-based polymers with a bandgap up to 2.02 eV for high performance field-effect transistors and polymer solar cells with an open-circuit voltage up to 0.98 V and an efficiency up to 6.84%

被引:32
作者
Hao, Minghui [1 ]
Luo, Guoping [2 ]
Shi, Keli [3 ]
Xie, Guohua [1 ]
Wu, Kailong [1 ]
Wu, Hongbin [2 ]
Yu, Gui [3 ]
Cao, Yong [2 ]
Yang, Chuluo [1 ]
机构
[1] Wuhan Univ, Dept Chem, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Hubei Key Lab Organ & Polymer Optoelect Mat, Wuhan 430072, Peoples R China
[2] S China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China
[3] Chinese Acad Sci, Beijing Natl Lab Mol Sci, Key Lab Organ Solids, Inst Chem, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
POWER CONVERSION EFFICIENCY; CONJUGATED POLYMERS; PHOTOVOLTAIC POLYMERS; FILL FACTORS; COPOLYMERS; SINGLE; AGGREGATION; CATHODE; LAYER;
D O I
10.1039/c5ta06111c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new electron donor, 4-(2-octyldodecyl)-dithieno[3,2-b:2',3'-d]pyridin-5(4H)-one (DTPO), for polymer semiconductors is reported. Its homopolymer PDTPO reveals a high hole mobility of 0.19 cm(2) V-1 s(-1) in field-effect transistors. Its copolymers with benzodithiophenes (BDTO and BDTT), namely PDTPO-BDTO and PDTPO-BDTT, not only show wide optical bandgaps of 2.02 and 1.95 eV, but also possess deep HOMO levels of -5.38 and -5.44 eV, respectively. The polymer solar cell based on PDTPO-BDTO with an inverted architecture achieves a power conversion efficiency (PCE) of 6.84% with a high open-circuit voltage (V-oc) of 0.93 V, while the one with PDTPO-BDTT realizes the same PCE with conventional architecture and a reasonably high V-oc of 0.96 V. The PCEs are among the highest ever reported for wide bandgap PSCs. Compared to the blend with PDTPO-BDTO having the 2-ethylhexyloxy group, the one with PDTPO-BDTT having the 5-(2-ethylhexyl)thiophene-2yl- group is demonstrated to be superior as a result of faster exciton separation into free charge carriers and larger driving force for exciton dissociation, which results in high short-circuit current and V-oc, respectively. The wide optical bandgaps and the excellent device performances make these polymers good candidates for boosting the PCE of the PSCs with a ternary blend layer or tandem structures.
引用
收藏
页码:20516 / 20526
页数:11
相关论文
共 62 条
  • [1] Benzobisthiazole-Based Donor-Acceptor Copolymer Semiconductors for Photovoltaic Cells and Highly Stable Field-Effect Transistors
    Ahmed, Eilaf
    Subramaniyan, Selvam
    Kim, Felix S.
    Xin, Hao
    Jenekhe, Samson A.
    [J]. MACROMOLECULES, 2011, 44 (18) : 7207 - 7219
  • [2] A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors
    Ashraf, Raja Shahid
    Kronemeijer, Auke Jisk
    James, David Ian
    Sirringhaus, Henning
    McCulloch, Iain
    [J]. CHEMICAL COMMUNICATIONS, 2012, 48 (33) : 3939 - 3941
  • [3] Linear Side Chains in Benzo[1,2-b:4,5-b′]dithiophene-Thieno[3,4-c]pyrrole-4,6-dione Polymers Direct Self-Assembly and Solar Cell Performance
    Cabanetos, Clement
    El Labban, Abdulrahman
    Bartelt, Jonathan A.
    Douglas, Jessica D.
    Mateker, William R.
    Frechet, Jean M. J.
    McGehee, Michael D.
    Beaujuge, Pierre M.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (12) : 4656 - 4659
  • [4] A pentacyclic aromatic lactam building block for efficient polymer solar cells
    Cao, Jiamin
    Liao, Qiaogan
    Du, Xiaoyan
    Chen, Jianhua
    Xiao, Zuo
    Zuo, Qiqun
    Ding, Liming
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (11) : 3224 - 3228
  • [5] An Efficient Triple-Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11%
    Chen, Chun-Chao
    Chang, Wei-Hsuan
    Yoshimura, Ken
    Ohya, Kenichiro
    You, Jingbi
    Gao, Jing
    Hong, Zirou
    Yang, Yang
    [J]. ADVANCED MATERIALS, 2014, 26 (32) : 5670 - +
  • [6] Single-Junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency
    Chen, Jing-De
    Cui, Chaohua
    Li, Yan-Qing
    Zhou, Lei
    Ou, Qing-Dong
    Li, Chi
    Li, Yongfang
    Tang, Jian-Xin
    [J]. ADVANCED MATERIALS, 2015, 27 (06) : 1035 - 1041
  • [7] Recombination in polymer-fullerene bulk heterojunction solar cells
    Cowan, Sarah R.
    Roy, Anshuman
    Heeger, Alan J.
    [J]. PHYSICAL REVIEW B, 2010, 82 (24)
  • [8] A Series of New Medium-Bandgap Conjugated Polymers Based on Naphtho[1,2-c:5,6-c]bis(2-octyl-[1,2,3]triazole) for High-Performance Polymer Solar Cells
    Dong, Yang
    Hu, Xiaowen
    Duan, Chunhui
    Liu, Peng
    Liu, Shengjian
    Lan, Liuyuan
    Chen, Dongcheng
    Ying, Lei
    Su, Shijian
    Gong, Xiong
    Huang, Fei
    Cao, Yong
    [J]. ADVANCED MATERIALS, 2013, 25 (27) : 3683 - 3688
  • [9] Visible-Near Infrared Absorbing Polymers Containing Thienoisoindigo and Electron-Rich Units for Organic Transistors with Tunable Polarity
    Dutta, Gitish K.
    Han, A-Reum
    Lee, Junghoon
    Kim, Yiho
    Oh, Joon Hak
    Yang, Changduk
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (42) : 5317 - 5325
  • [10] N-Acyldithieno[3,2-b:2′,3′-d]pyrroles: Second Generation Dithieno[3,2-b:2′,3′-d]pyrrole Building Blocks with Stabilized Energy Levels
    Evenson, Sean J.
    Rasmussen, Seth C.
    [J]. ORGANIC LETTERS, 2010, 12 (18) : 4054 - 4057