Microstructures and mechanical properties of nano carbides reinforced CoCrFeMnNi high entropy alloys

被引:77
作者
Li, Jianbo [1 ]
Gao, Bo [1 ]
Wang, Yitao [1 ]
Chen, Xianhua [1 ]
Xin, Yunchang [1 ]
Tang, Shan [2 ]
Liu, Bin [3 ]
Liu, Yong [3 ]
Song, Min [3 ]
机构
[1] Chongqing Univ, Sch Mat Sci & Engn, Chongqing 400044, Peoples R China
[2] Dalian Univ Technol, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian 116023, Peoples R China
[3] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
High-entropy alloy; Carbides; Cold rolling; Mechanical properties; SINGLE-PHASE; TENSILE PROPERTIES; TEXTURE EVOLUTION; CARBON; BEHAVIOR; RECRYSTALLIZATION; DEFORMATION; ADDITIONS; GROWTH; FLOW;
D O I
10.1016/j.jallcom.2019.03.403
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Different contents of carbon element (0-3 at.%) was added into CoCrFeMnNi high entropy alloys (HEAs) to prepare carbide-reinforced CoCrFeMnNi matrix composites. The effects of carbon on microstructures and mechanical properties were systematically studied. The CoCrFeMnNi HEA sheet without carbon showed fine recrystallized grains with a grain size of approximately 5 mm and contained Cr-rich sigma phase. The CoCrFeMnNiCx HEA sheets with 1.0 at.% and 3.0 at.% C presented fine recrystallized grains and a small fraction of elongated grains. A large number of nano-scaled carbides were observed in the carboncontaining HEA sheets. With the carbon content increasing from 0 at.% to 3.0 at.%, the strengthening of the alpha-fiber texture is more obvious, and tensile yield strength increased from 371MPa to 792MPa, however, the elongation decreased from 54% to 11%, respectively. The CoCrFeMnNiC1 HEA sheet with a volume fraction of 2.9% nano carbides showed excellent balanced mechanical property, with tensile yield strength of 634 MPa and elongation of 38%. The increase of yield strength for the CoCrFeMnNiC1 HEA was mainly ascribed to the combined effects of precipitation Orowan strengthening and dislocations strengthening. Precipitation Orowan strengthening is the primary strength contributor, with a value of approximate 157 MPa. (c) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:170 / 179
页数:10
相关论文
共 50 条
  • [31] Microstructures and properties of CoCrCuFeNiMox high-entropy alloys fabricated by mechanical alloying and spark plasma sintering
    Yang, Qiumin
    Tang, Yanyuan
    Wen, Yan
    Zhang, Qinying
    Deng, Dengfei
    Nai, Xinren
    POWDER METALLURGY, 2018, 61 (02) : 115 - 122
  • [32] Effect of Al addition on microstructures and mechanical properties of AlxCrFeNi2.5Mo high entropy alloys
    Liu, Jia
    Zhang, Jing
    Kong, Qingquan
    Wang, Hui
    Feng, Wei
    Li, Qiangguo
    Shu, Ming
    Yao, Weitang
    Wang, Qingyuan
    An, Xuguang
    MRS COMMUNICATIONS, 2023, 13 (03) : 425 - 430
  • [33] Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys
    Jiang, Hui
    Zhang, Huanzhi
    Huang, Tiandang
    Lu, Yiping
    Wang, Tongmin
    Li, Tingju
    MATERIALS & DESIGN, 2016, 109 : 539 - 546
  • [34] Role of recrystallization and second phases on mechanical properties of (CoCrFeMnNi)95.2Al3.2Ti1.6 high entropy alloy
    Kang, Jiyeon
    Park, Nokeun
    Kim, Jin-Kyung
    Park, Joo Hyun
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 814
  • [35] Microstructures and mechanical properties of CoCrFeMnNiVx high entropy alloy films
    Fang, Shuang
    Wang, Cheng
    Li, Chia-Lin
    Luan, Jun-Hua
    Jiao, Zeng-Bao
    Liu, Chain-Tsuan
    Hsueh, Chun-Hway
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 820
  • [36] Tensile Response of As-Cast CoCrFeNi and CoCrFeMnNi High-Entropy Alloys
    Lam, Tu-Ngoc
    Luo, Mao-Yuan
    Kawasaki, Takuro
    Harjo, Stefanus
    Jain, Jayant
    Lee, Soo-Yeol
    Yeh, An-Chou
    Huang, E-Wen
    CRYSTALS, 2022, 12 (02)
  • [37] Microstructure and Mechanical Properties of As-cast CoCrFeMnNi High Entropy Alloy
    Kang, Minju
    Won, Jong Woo
    Lim, Ka Ram
    Park, Sang Hyeop
    Seo, Seong Moon
    Na, Young Sang
    KOREAN JOURNAL OF METALS AND MATERIALS, 2017, 55 (10): : 732 - 738
  • [38] Microstructures, tensile properties and serrated flow of AlxCrMnFeCoNi high entropy alloys
    Xu, Jun
    Cao, Cheng-ming
    Gu, Ping
    Peng, Liang-ming
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2020, 30 (03) : 746 - 755
  • [39] Microstructures and properties of Al0.3CoCrFeNiMnx high entropy alloys
    Wong, Sze-Kwan
    Shun, Tao-Tsung
    Chang, Chieh-Hsiang
    Lee, Che-Fu
    MATERIALS CHEMISTRY AND PHYSICS, 2018, 210 : 146 - 151
  • [40] Effect of starting grain size on the evolution of microstructure and texture during thermo-mechanical processing of CoCrFeMnNi high entropy alloy
    Sathiaraj, G. D.
    Bhattacharjee, P. P.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 647 : 82 - 96