A new density-based scheme for clustering based on genetic algorithm

被引:1
|
作者
Lin, CY
Chang, CC [1 ]
机构
[1] Natl Chung Cheng Univ, Dept Comp Sci & Informat Engn, Chiayi 621, Taiwan
[2] Providence Univ, Dept Comp Sci & Informat Management London, Taichung 433, Taiwan
关键词
clustering algorithms; genetic algorithms; DBSCAN;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Density-based clustering can identify arbitrary data shapes and noises. Achieving good clustering performance necessitates regulating the appropriate parameters in the density-based clustering. To select suitable parameters successfully, this study proposes an interactive idea called GADAC to choose suitable parameters and accept the diverse radii for clustering. Adopting the diverse radii is the original idea employed to the density-based clustering, where the radii can be adjusted by the genetic algorithm to cover the clusters more accurately. Experimental results demonstrate that the noise and all clusters in any data shapes can be identified precisely in the proposed scheme. Additionally, the shape covering in the proposed scheme is more accurate than that in DBSCAN.
引用
收藏
页码:315 / 331
页数:17
相关论文
共 50 条
  • [31] A density-based clustering algorithm for the CYGNO data analysis
    Baracchini, E.
    Benussi, L.
    Bianco, S.
    Capoccia, C.
    Caponero, M.
    Cavoto, G.
    Cortez, A.
    Costa, I. A.
    Di Marco, E.
    D'Imperio, G.
    Dho, G.
    Lacoangeli, F.
    Maccarrone, G.
    Marafini, M.
    Mazzitelli, G.
    Messina, A.
    Nobrega, R. A.
    Orlandi, A.
    Paoletti, E.
    Passamonti, L.
    Petrucci, F.
    Piccolo, D.
    Pierluigi, D.
    Pinci, D.
    Renga, F.
    Rosatelli, F.
    Russo, A.
    Saviano, G.
    Tesauroc, R.
    Tomassini, S.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (12)
  • [32] Optimal choice of parameters for a density-based clustering algorithm
    Gan, WY
    Li, DY
    ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, 2003, 2639 : 603 - 606
  • [33] An Efficient Density-based clustering algorithm for face groping
    Pei, Shenfei
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    NEUROCOMPUTING, 2021, 462 : 331 - 343
  • [34] A density-based evolutionary clustering algorithm for intelligent development
    Xie, Haibin
    Li, Peng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 104
  • [35] Density-based clustering algorithm for mixture data sets
    Huang, De-Cai
    Wu, Tian-Hong
    Kongzhi yu Juece/Control and Decision, 2010, 25 (03): : 416 - 421
  • [36] A modified density-based clustering algorithm and its implementation
    Ban, Zhihua
    Liu, Jianguo
    Yuan, Lulu
    Yang, Hua
    MIPPR 2015: PATTERN RECOGNITION AND COMPUTER VISION, 2015, 9813
  • [37] A fast density-based clustering algorithm for large databases
    Liu, Bing
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 996 - 1000
  • [38] A New k-NN-Centroid-Inspired Density-Based Clustering Algorithm
    Wang, Xiaochun
    Chen, Yiqin
    Wang, Xia Li
    PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 766 - 771
  • [39] Research on application of grid-based and density-based clustering algorithm
    Shen, LX
    Yan, C
    PROCEEDINGS OF 2003 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING, VOLS I AND II, 2003, : 684 - 689
  • [40] An Improved Density-Based Clustering Algorithm Based on Cellular Neural Networks
    Xu, Jiexi
    Ling, Bingo Wing-Kuen
    Liu, Qing
    Wei, Yiting
    Zhang, Zhanbin
    IEEE ACCESS, 2024, 12 : 138027 - 138046