A new density-based scheme for clustering based on genetic algorithm

被引:1
|
作者
Lin, CY
Chang, CC [1 ]
机构
[1] Natl Chung Cheng Univ, Dept Comp Sci & Informat Engn, Chiayi 621, Taiwan
[2] Providence Univ, Dept Comp Sci & Informat Management London, Taichung 433, Taiwan
关键词
clustering algorithms; genetic algorithms; DBSCAN;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Density-based clustering can identify arbitrary data shapes and noises. Achieving good clustering performance necessitates regulating the appropriate parameters in the density-based clustering. To select suitable parameters successfully, this study proposes an interactive idea called GADAC to choose suitable parameters and accept the diverse radii for clustering. Adopting the diverse radii is the original idea employed to the density-based clustering, where the radii can be adjusted by the genetic algorithm to cover the clusters more accurately. Experimental results demonstrate that the noise and all clusters in any data shapes can be identified precisely in the proposed scheme. Additionally, the shape covering in the proposed scheme is more accurate than that in DBSCAN.
引用
收藏
页码:315 / 331
页数:17
相关论文
共 50 条
  • [21] Density-based clustering
    Campello, Ricardo J. G. B.
    Kroeger, Peer
    Sander, Jorg
    Zimek, Arthur
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (02)
  • [22] Density-based clustering
    Kriegel, Hans-Peter
    Kroeger, Peer
    Sander, Joerg
    Zimek, Arthur
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 1 (03) : 231 - 240
  • [23] An Algorithm to Adaptive Determination of Density Threshold for Density-based Clustering
    Ke, Zhang
    Lei, Huang
    Yi, Chai
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 3929 - 3935
  • [24] A Density-based clustering algorithm suitable to various density dataset
    School of Software, Dalian University of Technology, Dalian 116621, China
    J. Comput. Inf. Syst., 2008, 6 (2473-2481):
  • [25] RECOME: A new density-based clustering algorithm using relative KNN kernel density
    Geng, Yangli-ao
    Li, Qingyong
    Zheng, Rong
    Zhuang, Fuzhen
    He, Ruisi
    Xiong, Naixue
    INFORMATION SCIENCES, 2018, 436 : 13 - 30
  • [26] A new density-based sampling algorithm
    Ros, Frederic
    Guillaume, Serge
    PROCEEDINGS OF THE 2015 CONFERENCE OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY, 2015, 89 : 145 - 151
  • [27] Video abstraction using density-based clustering algorithm
    Fereshteh Falah Chamasemani
    Lilly Suriani Affendey
    Norwati Mustapha
    Fatimah Khalid
    The Visual Computer, 2018, 34 : 1299 - 1314
  • [28] Video abstraction using density-based clustering algorithm
    Chamasemani, Fereshteh Falah
    Affendey, Lilly Suriani
    Mustapha, Norwati
    Khalid, Fatimah
    VISUAL COMPUTER, 2018, 34 (10): : 1299 - 1314
  • [29] An Improved BAT Algorithm Using Density-Based Clustering
    Al-Asadi, Samraa Adnan
    Al-Mamory, Safaa O.
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2023, 26 (72): : 102 - 123
  • [30] A GPU-Accelerated Density-Based Clustering Algorithm
    Loh, Woong-Kee
    Kim, Young-Kuk
    2014 IEEE FOURTH INTERNATIONAL CONFERENCE ON BIG DATA AND CLOUD COMPUTING (BDCLOUD), 2014, : 775 - 776