Enhanced tolerance to oxidative stress in transgenic Arabidopsis plants expressing proteins of unknown function

被引:95
|
作者
Luhua, Song [1 ]
Ciftci-Yilmaz, Sultan [1 ]
Harper, Jeffery [1 ]
Cushman, John [1 ]
Mittler, Ron [1 ,2 ]
机构
[1] Univ Nevada, Dept Biochem & Mol Biol, Reno, NV 89557 USA
[2] Hebrew Univ Jerusalem, Dept Plant Sci, IL-91904 Jerusalem, Israel
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D O I
10.1104/pp.108.124875
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Over one-quarter of all plant genes encode proteins of unknown function that can be further classified as proteins with obscure features (POFs), which lack currently defined motifs or domains, or proteins with defined features, which contain at least one previously defined domain or motif. Although empirical data in the form of transcriptome and proteome profiling suggest that many of these proteins play important roles in plants, their functional characterization remains one of the main challenges in modern biology. To begin the functional annotation of proteins with unknown function, which are involved in the oxidative stress response of Arabidopsis (Arabidopsis thaliana), we generated transgenic Arabidopsis plants that constitutively expressed 23 different POFs (four of which were specific to Arabidopsis) and 18 different proteins with defined features. All were previously found to be expressed in response to oxidative stress in Arabidopsis. Transgenic plants were tested for their tolerance to oxidative stress imposed by paraquat or t-butyl hydroperoxide, or were subjected to osmotic, salinity, cold, and heat stresses. More than 70% of all expressed proteins conferred tolerance to oxidative stress. In contrast, >90% of the expressed proteins did not confer enhanced tolerance to the other abiotic stresses tested, and approximately 50% rendered plants more susceptible to osmotic or salinity stress. Two Arabidopsis-specific POFs, and an Arabidopsis and Brassica-specific protein of unknown function, conferred enhanced tolerance to oxidative stress. Our findings suggest that tolerance to oxidative stress involves mechanisms and pathways that are unknown at present, including some that are specific to Arabidopsis or the Brassicaceae.
引用
收藏
页码:280 / 292
页数:13
相关论文
共 50 条
  • [11] Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene
    Kwon, SY
    Choi, SM
    Ahn, YO
    Lee, HS
    Lee, HB
    Park, YM
    Kwak, SS
    JOURNAL OF PLANT PHYSIOLOGY, 2003, 160 (04) : 347 - 353
  • [12] DISSECTION OF OXIDATIVE STRESS TOLERANCE USING TRANSGENIC PLANTS
    ALLEN, RD
    PLANT PHYSIOLOGY, 1995, 107 (04) : 1049 - 1054
  • [13] Transgenic plants: An insight into oxidative stress tolerance mechanisms
    Elżbieta Kuźniak
    Acta Physiologiae Plantarum, 2002, 24 : 97 - 113
  • [14] Transgenic plants: An insight into oxidative stress tolerance mechanisms
    Kuzniak, E
    ACTA PHYSIOLOGIAE PLANTARUM, 2002, 24 (01) : 97 - 113
  • [15] Ectopic expression of ibPDS gene enhanced tolerance to oxidative stress in transgenic tobacco plants
    Sang-Gyu Seo
    Hae-Rim Jang
    Ji-Min Shin
    Byung Ki Jun
    Ie-Sung Shim
    Sun-Hyung Kim
    Plant Growth Regulation, 2015, 77 : 245 - 253
  • [16] Ectopic expression of ibPDS gene enhanced tolerance to oxidative stress in transgenic tobacco plants
    Seo, Sang-Gyu
    Jang, Hae-Rim
    Shin, Ji-Min
    Jun, Byung Ki
    Shim, Ie-Sung
    Kim, Sun-Hyung
    PLANT GROWTH REGULATION, 2015, 77 (02) : 245 - 253
  • [17] Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature
    Li Tang
    Suk-Yoon Kwon
    Sun-Hyung Kim
    Jin-Seog Kim
    Jung Sup Choi
    Kwang Yun Cho
    Chang K. Sung
    Sang-Soo Kwak
    Haeng-Soon Lee
    Plant Cell Reports, 2006, 25 : 1380 - 1386
  • [18] Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature
    Tang, Li
    Kwon, Suk-Yoon
    Kim, Sun-Hyung
    Kim, Jin-Seog
    Choi, Jung Sup
    Cho, Kwang Yun
    Sung, Chang K.
    Kwak, Sang-Soo
    Lee, Haeng-Soon
    PLANT CELL REPORTS, 2006, 25 (12) : 1380 - 1386
  • [19] Transgenic Arabidopsis Plants Expressing Grape Glutathione S-Transferase Gene (VvGSTF13) Show Enhanced Tolerance to Abiotic Stress
    Xu, Jing
    Zheng, Ai-Qing
    Xing, Xiao-Juan
    Chen, Lei
    Fu, Xiao-Yan
    Peng, Ri-He
    Tian, Yong-Sheng
    Yao, Quan-Hong
    BIOCHEMISTRY-MOSCOW, 2018, 83 (06) : 755 - 765
  • [20] Transgenic Arabidopsis Plants Expressing Grape Glutathione S-Transferase Gene (VvGSTF13) Show Enhanced Tolerance to Abiotic Stress
    Jing Xu
    Ai-Qing Zheng
    Xiao-Juan Xing
    Lei Chen
    Xiao-Yan Fu
    Ri-He Peng
    Yong-Sheng Tian
    Quan-Hong Yao
    Biochemistry (Moscow), 2018, 83 : 755 - 765