Enhanced tolerance to oxidative stress in transgenic Arabidopsis plants expressing proteins of unknown function

被引:95
|
作者
Luhua, Song [1 ]
Ciftci-Yilmaz, Sultan [1 ]
Harper, Jeffery [1 ]
Cushman, John [1 ]
Mittler, Ron [1 ,2 ]
机构
[1] Univ Nevada, Dept Biochem & Mol Biol, Reno, NV 89557 USA
[2] Hebrew Univ Jerusalem, Dept Plant Sci, IL-91904 Jerusalem, Israel
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D O I
10.1104/pp.108.124875
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Over one-quarter of all plant genes encode proteins of unknown function that can be further classified as proteins with obscure features (POFs), which lack currently defined motifs or domains, or proteins with defined features, which contain at least one previously defined domain or motif. Although empirical data in the form of transcriptome and proteome profiling suggest that many of these proteins play important roles in plants, their functional characterization remains one of the main challenges in modern biology. To begin the functional annotation of proteins with unknown function, which are involved in the oxidative stress response of Arabidopsis (Arabidopsis thaliana), we generated transgenic Arabidopsis plants that constitutively expressed 23 different POFs (four of which were specific to Arabidopsis) and 18 different proteins with defined features. All were previously found to be expressed in response to oxidative stress in Arabidopsis. Transgenic plants were tested for their tolerance to oxidative stress imposed by paraquat or t-butyl hydroperoxide, or were subjected to osmotic, salinity, cold, and heat stresses. More than 70% of all expressed proteins conferred tolerance to oxidative stress. In contrast, >90% of the expressed proteins did not confer enhanced tolerance to the other abiotic stresses tested, and approximately 50% rendered plants more susceptible to osmotic or salinity stress. Two Arabidopsis-specific POFs, and an Arabidopsis and Brassica-specific protein of unknown function, conferred enhanced tolerance to oxidative stress. Our findings suggest that tolerance to oxidative stress involves mechanisms and pathways that are unknown at present, including some that are specific to Arabidopsis or the Brassicaceae.
引用
收藏
页码:280 / 292
页数:13
相关论文
共 50 条
  • [1] Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts
    Young-Pyo Lee
    Sun-Hyung Kim
    Jae-Wook Bang
    Haeng-Soon Lee
    Sang-Soo Kwak
    Suk-Yoon Kwon
    Plant Cell Reports, 2007, 26 : 591 - 598
  • [2] Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts
    Young-Pyo, Lee
    Kim, Sun-Hyung
    Bang, Jae-Wook
    Lee, Haeng-Soon
    Kwak, Sang-Soo
    Kwon, Suk-Yoon
    PLANT CELL REPORTS, 2007, 26 (05) : 591 - 598
  • [3] Enhanced tolerance to heat stress in transgenic plants expressing the GASA4 gene
    Ko, Chang-Beom
    Woo, Young-Min
    Lee, Dong Ju
    Lee, Myung-Chul
    Kim, Cheol Soo
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2007, 45 (09) : 722 - 728
  • [4] PIIN_05330 transgenic Arabidopsis plants enhanced drought-stress tolerance
    Jianmiao Chen
    Yuanming Ye
    Jinwang Qu
    Chu Wu
    Biologia, 2023, 78 : 937 - 950
  • [5] PIIN_05330 transgenic Arabidopsis plants enhanced drought-stress tolerance
    Chen, Jianmiao
    Ye, Yuanming
    Qu, Jinwang
    Wu, Chu
    BIOLOGIA, 2023, 78 (04) : 937 - 950
  • [6] Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance
    Kim, Yun-Hee
    Kim, Myoung Duck
    Choi, Young Im
    Park, Sung-Chul
    Yun, Dae-Jin
    Noh, Eun Woon
    Lee, Haeng-Soon
    Kwak, Sang-Soo
    PLANT BIOTECHNOLOGY JOURNAL, 2011, 9 (03) : 334 - 347
  • [7] Enhanced tolerance of transgenic potato plants expressing choline oxidase in chloroplasts against water stress
    Cheng, Yu-Jie
    Deng, Xi-Ping
    Kwak, Sang-Soo
    Chen, Wei
    Eneji, Anthony E.
    BOTANICAL STUDIES, 2013, 54
  • [8] Transgenic Alfalfa Plants Expressing the Sweetpotato Orange Gene Exhibit Enhanced Abiotic Stress Tolerance
    Wang, Zhi
    Ke, Qingbo
    Kim, Myoung Duck
    Kim, Sun Ha
    Ji, Chang Yoon
    Jeong, Jae Cheol
    Lee, Haeng-Soon
    Park, Woo Sung
    Ahn, Mi-Jeong
    Li, Hongbing
    Xu, Bingcheng
    Deng, Xiping
    Lee, Sang-Hoon
    Lim, Yong Pyo
    Kwak, Sang-Soo
    PLOS ONE, 2015, 10 (05):
  • [9] Transgenic tobacco plants expressing the bacterial levansucrase gene show enhanced tolerance to osmotic stress
    Park, JM
    Kwon, SY
    Song, KB
    Kwak, JW
    Lee, SB
    Nam, YW
    Shin, JS
    Park, YI
    Rhee, SK
    Paek, KH
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 1999, 9 (02) : 213 - 218
  • [10] Enhanced tolerance of transgenic potato plants expressing choline oxidase in chloroplasts against water stress
    Yu-Jie Cheng
    Xi-Ping Deng
    Sang-Soo Kwak
    Wei Chen
    Anthony E Eneji
    Botanical Studies, 54