Electrical and Proton Conduction Properties of Amorphous TiO2 Nanotubes Fabricated by Electrochemical Anodization

被引:9
|
作者
Hanzu, Ilie [1 ]
Djenizian, Thierry [1 ]
Knauth, Philippe [1 ]
机构
[1] Aix Marseille Univ, CNRS, UMR Lab Chim Provence 6264, Ctr St Jerome, F-13397 Marseille 20, France
来源
WIDE BANDGAP SEMICONDUCTOR MATERIALS AND DEVICES 12 | 2011年 / 35卷 / 06期
关键词
PHOTOELECTROCHEMICAL PROPERTIES; CHARGE-TRANSFER; OXIDE-FILMS; THIN-FILMS; ELECTRODE; ACID; ARRAYS; PHOTORESPONSE; VOLTAMMETRY; INSERTION;
D O I
10.1149/1.3570842
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electrolyte contacts were used to investigate the properties of pure and N-doped titania nanotubes (ntTiO(2)). Mott-Schottky analysis gave a flat-band potential E-fb = -0.57V vs. Ag/AgCl for pure ntTiO(2) and E-fb = -0.22V vs. Ag/AgCl for N-doped ntTiO(2). The charge carrier density was N-D = 6.7 10(20) cm(-3) for pure ntTiO(2) and ND = 3.9 10(20) for N-doped ntTiO(2). This investigation also allowed estimation of the apparent diffusion coefficient of H+ in ntTiO(2). Following the Randles-Sevcik method, the effective proton diffusion coefficient in ntTiO(2) is (2 +/- 1).10(-11) cm(2)s(-1) while in N-doped ntTiO(2) it is (4 +/- 1).10(-11) cm(2)s(-1). Using the Warburg diffusion element determined by electrochemical impedance spectroscopy, the proton diffusion coefficient is (2 +/- 1).10(-11) cm(2) s(-1) for pure ntTiO(2) while for nitrogen-doped ntTiO(2) a value of (7 +/- 3).10(-11) cm(2) s(-1) is found. These values are consistent with those of the Randles-Sevcik method.
引用
收藏
页码:21 / 31
页数:11
相关论文
共 50 条
  • [21] Fabrication and photodegradation properties of TiO2 nanotubes on porous Ti by anodization
    Cao, Guo-jian
    Cui, Bo
    Wang, Wen-qi
    Tang, Guang-ze
    Feng, Yi-cheng
    Wang, Li-ping
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2014, 24 (08) : 2581 - 2587
  • [22] Fabrication of nanoporous TiO2 by electrochemical anodization
    Sulka, Grzegorz D.
    Kapusta-Kolodziej, Joanna
    Brzozka, Agnieszka
    Jaskula, Marian
    ELECTROCHIMICA ACTA, 2010, 55 (14) : 4359 - 4367
  • [23] Enhancing electrical and optical properties of anatase TiO2 nanotubes through electrochemical lithiation
    Latas, Nemanja
    Pjevic, Dejan
    Rajic, Vladimir
    Ivanovic, Milutin
    Jugovic, Dragana
    Stojadinovic, Stevan
    Cvjeticanin, Nikola
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1005
  • [24] Application of ultrasonic wave to clean the surface of the TiO2 nanotubes prepared by the electrochemical anodization
    Xu, Hao
    Zhang, Qian
    Zheng, Chunli
    Yan, Wei
    Chu, Wei
    APPLIED SURFACE SCIENCE, 2011, 257 (20) : 8478 - 8480
  • [25] Water content in the anodization electrolyte affects the electrochemical and electronic transport properties of TiO2 nanotubes: a study by electrochemical impedance spectroscopy
    Tsui, Lok-kun
    Zangari, Giovanni
    ELECTROCHIMICA ACTA, 2014, 121 : 203 - 209
  • [26] Morphology dependent electrical conduction and breakdown in single TiO2 nanotubes
    Kajli, Sourav Kumar
    Ray, Debdutta
    Roy, Somnath C.
    NANOSCALE ADVANCES, 2021, 3 (02): : 432 - 445
  • [27] Effect of Anodization Parameters on the Surface Morphology and Photoelectrochemical Properties of TiO2 Nanotubes
    Zhang, Shenghan
    Li, Yanqing
    Xu, Peiyao
    Liang, Kexin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (11): : 10714 - 10725
  • [28] Effect of calcinations on electrical properties of TiO2 nanotubes
    Vijayan, Pournami P.
    Thomas, Marykutty
    George, K. C.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (10)
  • [29] Anodization Fabrication of Highly Ordered TiO2 Nanotubes
    Li, Shiqi
    Zhang, Gengmin
    Guo, Dengzhu
    Yu, Ligang
    Zhang, Wei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (29): : 12759 - 12765
  • [30] Fabrication of TiO2 Nanotubes Array by Anodization for DSSC
    Yan, Hongzhou
    Yang, Junyou
    Feng, Shuanglong
    Liu, Ming
    Peng, Jiangying
    Zhang, Jiaqi
    Li, Weixin
    ENERGY AND ENVIRONMENT MATERIALS, 2013, 743-744 : 920 - 925