Multi-objective ligand-protein docking with particle swarm optimizers

被引:14
作者
Garcia-Nieto, Jose [1 ]
Lopez-Camacho, Esteban [1 ]
Jesus Garcia-Godoy, Maria [1 ]
Nebro, Antonio J. [1 ]
Aldana-Montes, Jose F. [1 ]
机构
[1] Univ Malaga, ETSI Informat, Dept Lenguajes & Ciencias Computac, Campus Teatinos, E-29071 Malaga, Spain
关键词
Multi-objective optimization; Particle swarm optimization; Molecular docking; Archiving strategies; Algorithm comparison; MOLECULAR DOCKING; GENETIC ALGORITHM; AUTODOCK; METAHEURISTICS; OPTIMIZATION; ACCURACY; FIELD;
D O I
10.1016/j.swevo.2018.05.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the last years, particle swarm optimizers have emerged as prominent search methods to solve the molecular docking problem. A new approach to address this problem consists in a multi-objective formulation, minimizing the intermolecular energy and the Root Mean Square Deviation (RMSD) between the atom coordinates of the co-crystallized and the predicted ligand conformations. In this paper, we analyze the performance of a set of multi-objective particle swarm optimization variants based on different archiving and leader selection strategies, in the scope of molecular docking. The conducted experiments involve a large set of 75 molecular instances from the Protein Data Bank database (PDB) characterized by different sizes of HIV-protease inhibitors. The main motivation is to provide molecular biologists with unbiased conclusions concerning which algorithmic variant should be used in drug discovery. Our study confirms that the multi-objective particle swarm algorithms SMPSOhv and MPSO/D show the best overall performance. An analysis of the resulting molecular ligand conformations, in terms of binding site and molecular interactions, is also performed to validate the solutions found, from a biological point of view.
引用
收藏
页码:439 / 452
页数:14
相关论文
共 40 条
[11]   A Study of Multiobjective Metaheuristics When Solving Parameter Scalable Problems [J].
Durillo, Juan J. ;
Nebro, Antonio J. ;
Coello Coello, Carlos A. ;
Garcia-Nieto, Jose ;
Luna, Francisco ;
Alba, Enrique .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (04) :618-635
[12]  
Durillo JJ, 2009, LECT NOTES COMPUT SC, V5467, P495, DOI 10.1007/978-3-642-01020-0_39
[13]   A Study of Archiving Strategies in Multi-objective PSO for Molecular Docking [J].
Garcia-Nieto, Jose ;
Lopez-Camacho, Esteban ;
Garcia Godoy, Maria Jesus ;
Nebro, Antonio J. ;
Durillo, Juan J. ;
Aldana-Montes, Jose F. .
SWARM INTELLIGENCE, 2016, 9882 :40-52
[14]   EADock: Docking of small molecules into protein active sites with a multiobjective evolutionary optimization [J].
Grosdidier, Aurelien ;
Zoete, Vincent ;
Michielin, Olivier .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 67 (04) :1010-1025
[15]   MoDock: A multi-objective strategy improves the accuracy for molecular docking [J].
Gu, Junfeng ;
Yang, Xu ;
Kang, Ling ;
Wu, Jinying ;
Wang, Xicheng .
ALGORITHMS FOR MOLECULAR BIOLOGY, 2015, 10
[16]   A semiempirical free energy force field with charge-based desolvation [J].
Huey, Ruth ;
Morris, Garrett M. ;
Olson, Arthur J. ;
Goodsell, David S. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2007, 28 (06) :1145-1152
[17]  
Ishibuchi H, 2016, IEEE C EVOL COMPUTAT, P1107, DOI 10.1109/CEC.2016.7743912
[18]   Molecular docking with multi-objective particle swarm optimization [J].
Janson, Stefan ;
Merkle, Daniel ;
Middendorf, Martin .
APPLIED SOFT COMPUTING, 2008, 8 (01) :666-675
[19]   Solving Molecular Docking Problems with Multi-Objective Metaheuristics [J].
Jesus Garcia-Godoy, Maria ;
Lopez-Camacho, Esteban ;
Garcia-Nieto, Jose ;
Nebro, Antonio J. ;
Aldana-Montes, Jose F. .
MOLECULES, 2015, 20 (06) :10154-10183
[20]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968