Metabolic engineering of Escherichia coli for biosynthesis of D-galactonate

被引:11
作者
Liu, Huaiwei [1 ]
Ramos, Kristine Rose M. [1 ]
Valdehuesa, Kris Nino G. [1 ]
Nisola, Grace M. [1 ]
Malihan, Lenny B. [1 ]
Lee, Won-Keun [2 ]
Park, Si Jae [1 ]
Chung, Wook-Jin [1 ]
机构
[1] Myongji Univ, Dept Energy & Biotechnol, Energy & Environm Fus Technol Ctr E2FTC, Yongin 449728, Gyeonggi Do, South Korea
[2] Myongji Univ, Div Biosci & Bioinformat, Yongin 449728, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
D-galactonate; D-galactose; Galactose dehydrogenase; Bioconversion; Metabolic engineering; XYLONIC ACID; DEHYDROGENASE; PATHWAY; GENE;
D O I
10.1007/s00449-013-1003-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
D-galactose is an attractive substrate for bioconversion. Herein, Escherichia coli was metabolically engineered to convert d-galactose into d-galactonate, a valuable compound in the polymer and cosmetic industries. d-galactonate productions by engineered E. coli strains were observed in shake flask cultivations containing 2 g L-1 d-galactose. Engineered E. coli expressing gld coding for galactose dehydrogenase from Pseudomonas syringae was able to produce 0.17 g L-1 d-galactonate. Inherent metabolic pathways for assimilating both d-galactose and d-galactonate were blocked to enhance the production of d-galactonate. This approach finally led to a 7.3-fold increase with d-galactonate concentration of 1.24 g L-1 and yield of 62.0 %. Batch fermentation in 20 g L-1 d-galactose of E. coli agalKadgoK mutant expressing the gld resulted in 17.6 g L-1 of d-galactonate accumulation and highest yield of 88.1 %. Metabolic engineering strategy developed in this study could be useful for industrial production of d-galactonate.
引用
收藏
页码:383 / 391
页数:9
相关论文
共 24 条
[1]   Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection [J].
Baba, Tomoya ;
Ara, Takeshi ;
Hasegawa, Miki ;
Takai, Yuki ;
Okumura, Yoshiko ;
Baba, Miki ;
Datsenko, Kirill A. ;
Tomita, Masaru ;
Wanner, Barry L. ;
Mori, Hirotada .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0008
[2]   Identification in the mould Hypocrea jecorina of a gene encoding an NADP+:: D-xylose dehydrogenase [J].
Berghall, Suvi ;
Hilditch, Satu ;
Penttila, Merja ;
Richard, Peter .
FEMS MICROBIOLOGY LETTERS, 2007, 277 (02) :249-253
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   PRODUCTION OF XYLONIC ACID BY PSEUDOMONAS-FRAGI [J].
BUCHERT, J ;
VIIKARI, L ;
LINKO, M ;
MARKKANEN, P .
BIOTECHNOLOGY LETTERS, 1986, 8 (08) :541-546
[5]   UTILIZATION OF D-GALACTONATE AND D-2-OXO-3-DEOXYGALACTONATE BY ESCHERICHIA-COLI-K-12 - BIOCHEMICAL AND GENETIC STUDIES [J].
COOPER, RA .
ARCHIVES OF MICROBIOLOGY, 1978, 118 (02) :199-206
[6]  
FIEDLER S, 1990, APPL MICROBIOL BIOT, V33, P418
[7]   Structure and function of enzymes of the Leloir pathway for galactose metabolism [J].
Holden, HM ;
Rayment, I ;
Thoden, JB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (45) :43885-43888
[8]  
Kim G.S., 2010, US Patent, Patent No. [2010/0124774 A1, 20100124774, Method of producing biofuel using sea algae]
[9]   Ethanol production from marine algal hydrolysates using Escherichia coli KO11 [J].
Kim, Nag-Jong ;
Li, Hui ;
Jung, Kwonsu ;
Chang, Ho Nam ;
Lee, Pyung Cheon .
BIORESOURCE TECHNOLOGY, 2011, 102 (16) :7466-7469
[10]   Engineering Filamentous Fungi for Conversion of D-Galacturonic Acid to L-Galactonic Acid [J].
Kuivanen, Joosu ;
Mojzita, Dominik ;
Wang, Yanming ;
Hilditch, Satu ;
Penttila, Merja ;
Richard, Peter ;
Wiebe, Marilyn G. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (24) :8676-8683