Numerical solution of a spatio-temporal predator-prey model with infected prey

被引:16
作者
Burger, Raimund [1 ,2 ]
Chowell, Gerardo [3 ,4 ,5 ]
Gavilan, Elvis [1 ,2 ]
Mulet, Pep [6 ]
Villada, Luis M. [1 ,2 ,7 ]
机构
[1] Univ Concepcion, CI2MA, Casilla 160-C, Concepcion, Chile
[2] Univ Concepcion, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
[3] Georgia State Univ, Sch Publ Hlth, Atlanta, GA 30303 USA
[4] Arizona State Univ, Simon A Levin Math & Computat Modeling Sci Ctr, Sch Human Evolut & Social Change, Tempe, AZ 85287 USA
[5] NIH, Div Int Epidemiol & Populat Studies, Fogarty Int Ctr, Bethesda, MD 20892 USA
[6] Univ Valencia, Dept Matemat, Av Dr Moliner 50, E-46100 Burjassot, Spain
[7] Univ Bio Bio, GIMNAP Dept Matemat, Casilla 5-C, Concepcion, Chile
关键词
convection-diffusion-reaction system; implicit-explicit Runge-Kutta scheme; non-local velocity; predator; prey model; RUNGE-KUTTA SCHEMES; ECO-EPIDEMIOLOGIC MODEL; EFFICIENT IMPLEMENTATION; HYPERBOLIC SYSTEMS; SALTON-SEA; PELICANS; BEHAVIOR; DISEASE; RISK; ENO;
D O I
10.3934/mbe.2019021
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A spatio-temporal eco-epidemiological model is formulated by combining an available non-spatial model for predator-prey dynamics with infected prey [D. Greenhalgh and M. Haque, Math. Meth. Appl. Sci., 30 (2007), 911-929] with a spatio-temporal susceptible-infective (SI)-type epidemic model of pattern formation due to diffusion [G.-Q. Sun, Nonlinear Dynamics, 69 (2012), 1097-1104]. It is assumed that predators exclusively eat infected prey, in agreement with the hypothesis that the infection weakens the prey, making it available for predation otherwise we assume that the predator has essentially no access to healthy prey of the same species. Furthermore, the movement of predators is described by a non-local convolution of the density of infected prey as proposed in [R.M. Colombo and E. Rossi, Commun. Math. Sci., 13 (2015), 369-400]. The resulting convection-diffusion-reaction system of three partial differential equations for the densities of susceptible and infected prey and predators is solved by an efficient method that combines weighted essentially non-oscillatory (WENO) reconstructions and an implicit-explicit Runge-Kutta (IMEX-RK) method for time stepping. Numerical examples illustrate the formation of spatial patterns involving all three species.
引用
收藏
页码:438 / 473
页数:36
相关论文
共 52 条
[1]   Asymptotic profiles of the steady states for an sis epidemic patch model [J].
Allen, L. J. S. ;
Bolker, B. M. ;
Lou, Y. ;
Nevai, A. L. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2007, 67 (05) :1283-1309
[2]  
[Anonymous], 2015, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
[3]   A multi-species epidemic model with spatial dynamics [J].
Arino, J ;
Davis, JR ;
Hartley, D ;
Jordan, R ;
Miller, JM ;
van den Driessche, P .
MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2005, 22 (02) :129-142
[4]  
Arino J., 2009, Modeling and dynamics of infectious diseases, P64, DOI DOI 10.1142/9789814261265_0003
[5]   Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations [J].
Ascher, UM ;
Ruuth, SJ ;
Spiteri, RJ .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :151-167
[6]   High Order Semi-implicit Schemes for Time Dependent Partial Differential Equations [J].
Boscarino, Sebastiano ;
Filbet, Francis ;
Russo, Giovanni .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (03) :975-1001
[7]   LINEARLY IMPLICIT IMEX RUNGE-KUTTA METHODS FOR A CLASS OF DEGENERATE CONVECTION-DIFFUSION PROBLEMS [J].
Boscarino, Sebastiano ;
Buerger, Raimund ;
Mulet, Pep ;
Russo, Giovanni ;
Villada, Luis M. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02) :B305-B331
[8]   HIGH-ORDER ASYMPTOTIC-PRESERVING METHODS FOR FULLY NONLINEAR RELAXATION PROBLEMS [J].
Boscarino, Sebastiano ;
Lefloch, Philippe G. ;
Russo, Giovanni .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (02) :A377-A395
[9]   FLUX-EXPLICIT IMEX RUNGE-KUTTA SCHEMES FOR HYPERBOLIC TO PARABOLIC RELAXATION PROBLEMS [J].
Boscarino, Sebastiano ;
Russo, Giovanni .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) :163-190
[10]   ON A CLASS OF UNIFORMLY ACCURATE IMEX RUNGE-KUTTA SCHEMES AND APPLICATIONS TO HYPERBOLIC SYSTEMS WITH RELAXATION [J].
Boscarino, Sebastiano ;
Russo, Giovanni .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (03) :1926-1945