On global existence of weak solutions to a viscous capillary model of plasma

被引:4
作者
Tang, Tong [1 ,2 ]
Gao, Hongjun [3 ]
Xiao, Qingkun [4 ]
机构
[1] Hohai Univ, Coll Sci, Dept Math, Nanjing 210098, Jiangsu, Peoples R China
[2] Acad Sci Czech Republ, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[3] Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
[4] Nanjing Agr Univ, Coll Sci, Dept Math, Nanjing 210095, Jiangsu, Peoples R China
关键词
Plasma; Global existence; Weak solutions; COMPRESSIBLE FLUID MODELS; QUASI-NEUTRAL LIMIT; HYDRODYNAMIC MODEL; QUANTUM; KORTEWEG; SYSTEM; EQUATIONS;
D O I
10.1016/j.na.2019.02.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a viscous capillary model of plasma as a so called Navier-Stokes-Poisson-Korteweg model. Our purpose is to prove the existence of global weak solutions for large data in a two-dimensional torus. We utilize the effective velocity and some interesting identities to remove the restrictions on the coefficients. It is worth pointing out that we prove the critical case that the value of viscosity coefficient is equivalent to the capillary coefficient nu = kappa. In this case, the B-D entropy and method used in Antonelli and Spirito (2017) cannot be applied directly. Moreover, there is no friction term and cold pressure term in the model. In some senses, we improve the previous results. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 29 条
[1]   On the compactness of finite energy weak solutions to the quantum Navier-Stokes equations [J].
Antonelli, Paolo ;
Spirito, Stefano .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2018, 15 (01) :133-147
[2]   Global Existence of Finite Energy Weak Solutions of Quantum Navier-Stokes Equations [J].
Antonelli, Paolo ;
Spirito, Stefano .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 225 (03) :1161-1199
[3]   The Quantum Hydrodynamics System in Two Space Dimensions [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (02) :499-527
[4]   On the Finite Energy Weak Solutions to a System in Quantum Fluid Dynamics [J].
Antonelli, Paolo ;
Marcati, Pierangelo .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (02) :657-686
[5]   Quasi-neutral limit for a viscous capillary model of plasma [J].
Bresch, D ;
Desjardins, B ;
Ducomet, B .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (01) :1-9
[6]   On some compressible fluid models: Korteweg, lubrication, and shallow water systems [J].
Bresch, D ;
Desjardins, B ;
Lin, CK .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) :843-868
[7]   On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids [J].
Bresch, Didier ;
Desjardins, Benoit .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (01) :57-90
[8]   A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler-Korteweg equations [J].
Bresch, Didier ;
Couderc, Frederic ;
Noble, Pascal ;
Vila, Jean-Paul .
COMPTES RENDUS MATHEMATIQUE, 2016, 354 (01) :39-43
[9]   Derivation of viscous correction terms for the isothermal quantum Euler model [J].
Brull, S. ;
Mehats, F. .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (03) :219-230
[10]   ON THE MOTION OF INCOMPRESSIBLE INHOMOGENEOUS EULER-KORTEWEG FLUIDS [J].
Bulicek, Miroslav ;
Feireisl, Eduard ;
Malek, Josef ;
Shvydkoy, Roman .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2010, 3 (03) :497-515