Self-organized criticality on quasiperiodic graphs

被引:6
|
作者
Joseph, D [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
EUROPEAN PHYSICAL JOURNAL B | 1999年 / 11卷 / 01期
关键词
D O I
10.1007/s100510050910
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Self-organized critical models are used to describe the 1/f-spectra of rather different physical situations like snow avalanches, noise of electric currents, luminosities of stars or topologies of landscapes. The prototype of the SOC-models is the sandpile model of Bak, Tang and Wiesenfeld (Phys. Rw. Lett. 59, 381 (1987)). We implement this model on non-periodic graphs where it can become either isotropic or anisotropic and compare its properties with the periodic counterpart on the square lattice.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [21] Self-organized criticality in a nutshell
    Nagler, J
    Hauert, C
    Schuster, HG
    PHYSICAL REVIEW E, 1999, 60 (03): : 2706 - 2709
  • [22] Seismicity and self-organized criticality
    Turcotte, DL
    PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1999, 111 (3-4) : 275 - 293
  • [23] Self-organized criticality and earthquakes
    Caruso, Filippo
    Pluchino, Alessandro
    Latora, Vito
    Rapisarda, Andrea
    Vinciguerra, Sergio
    COMPLEXITY, METASTABILITY AND NONEXTENSIVITY, 2007, 965 : 281 - +
  • [24] SELF-ORGANIZED CRITICALITY AND EARTHQUAKES
    SORNETTE, A
    SORNETTE, D
    EUROPHYSICS LETTERS, 1989, 9 (03): : 197 - 202
  • [25] CASCADES AND SELF-ORGANIZED CRITICALITY
    MANNA, SS
    KISS, LB
    KERTESZ, J
    JOURNAL OF STATISTICAL PHYSICS, 1990, 61 (3-4) : 923 - 932
  • [26] Turbulent self-organized criticality
    De Menech, M
    Stella, AL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 309 (3-4) : 289 - 296
  • [27] SIMULATION OF SELF-ORGANIZED CRITICALITY
    BAK, P
    PHYSICA SCRIPTA, 1990, T33 : 9 - 10
  • [28] Apparent self-organized criticality
    Tainaka, Kei-Ichi
    Itoh, Yoshiaki
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 220 (1-3): : 58 - 62
  • [29] Self-organized criticality paradigm
    Duran, I
    Stöckel, J
    Hron, M
    Horácek, J
    Jakubka, K
    Kryska, L
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2000, 50 : 42 - 46
  • [30] Self-organized Higgs criticality
    Cem Eröncel
    Jay Hubisz
    Gabriele Rigo
    Journal of High Energy Physics, 2019