Message-Passing Algorithms for Quadratic Minimization

被引:0
作者
Ruozzi, Nicholas [1 ]
Tatikonda, Sekhar [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Commun Theory Lab, CH-1011 Lausanne, Switzerland
[2] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
belief propagation; Gaussian graphical models; graph covers; GAUSSIAN GRAPHICAL MODELS; BELIEF-PROPAGATION; PRODUCT; OPTIMIZATION; CORRECTNESS; CONVERGENCE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Gaussian belief propagation (GaBP) is an iterative algorithm for computing the mean (and variances) of a multivariate Gaussian distribution, or equivalently, the minimum of a multivariate positive definite quadratic function. Sufficient conditions, such as walk-summability, that guarantee the convergence and correctness of GaBP are known, but GaBP may fail to converge to the correct solution given an arbitrary positive definite covariance matrix. As was observed by Malioutov et al. (2006), the GaBP algorithm fails to converge if the computation trees produced by the algorithm are not positive definite. In this work, we will show that the failure modes of the GaBP algorithm can be understood via graph covers, and we prove that a parameterized generalization of the min-sum algorithm can be used to ensure that the computation trees remain positive definite whenever the input matrix is positive definite. We demonstrate that the resulting algorithm is closely related to other iterative schemes for quadratic minimization such as the Gauss-Seidel and Jacobi algorithms. Finally, we observe, empirically, that there always exists a choice of parameters such that the above generalization of the GaBP algorithm converges.
引用
收藏
页码:2287 / 2314
页数:28
相关论文
共 23 条
  • [1] [Anonymous], 1985, Matrix Analysis
  • [2] [Anonymous], 2008, Applied iterative methods
  • [3] [Anonymous], P NEUR INF PROC SYST
  • [4] Signal-space characterization of iterative decoding
    Frey, BJ
    Koetter, R
    Vardy, A
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) : 766 - 781
  • [5] Norm-Product Belief Propagation: Primal-Dual Message-Passing for Approximate Inference
    Hazan, Tamir
    Shashua, Amnon
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (12) : 6294 - 6316
  • [6] Fixing Convergence of Gaussian Belief Propagation
    Johnson, Jason K.
    Bickson, Danny
    Dolev, Danny
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 1674 - +
  • [7] Malioutov D. M., 2008, THESIS MIT
  • [8] Malioutov DM, 2006, J MACH LEARN RES, V7, P2031
  • [9] Meltzer T., 2009, PROC C UNCERTAINTY A, P393
  • [10] Convergence of Min-Sum Message-Passing for Convex Optimization
    Moallemi, Ciamac C.
    Van Roy, Benjamin
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) : 2041 - 2050