Host Cell Prediction of Exosomes Using Morphological Features on Solid Surfaces Analyzed by Machine Learning

被引:23
作者
Ito, Kazuki [1 ]
Ogawa, Yuta [1 ]
Yokota, Keiji [1 ]
Matsumura, Sachiko [2 ]
Minamisawa, Tamiko [2 ]
Suga, Kanako [2 ]
Shiba, Kiyotaka [2 ]
Kimura, Yasuo [3 ]
Hirano-Iwata, Ayumi [4 ]
Takamura, Yuzuru
Ogino, Toshio [1 ,5 ]
机构
[1] Yokohama Natl Univ, Hodogaya Ku, 79-5 Tokiwadai, Yokohama, Kanagawa 2408501, Japan
[2] Japanese Fdn Canc Res, Koto Ku, 3-8-31 Ariake, Tokyo 1358550, Japan
[3] Tokyo Univ Technol, 1404-1 Katakura Cho, Hachioji, Tokyo 1920914, Japan
[4] Tohoku Univ, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[5] Japan Adv Inst Sci & Technol, 1-1 Asahi Dai, Nomi, Ishikawa, Japan
基金
日本科学技术振兴机构;
关键词
LIPID VESICLE ADSORPTION; ATOMIC-FORCE MICROSCOPY; HUMAN-SALIVA; EXTRACELLULAR VESICLES; MICROVESICLES; SIZE; MICROPARTICLES; IDENTIFICATION; MECHANISMS; BIOMARKERS;
D O I
10.1021/acs.jpcb.8b01646
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Exosomes are extracellular nanovesicles released from any cells and found in any body fluid. Because exosomes exhibit information of their host cells (secreting cells), their analysis is expected to be a powerful tool for early diagnosis of cancers. To predict the host cells, we extracted multidimensional feature data about size, shape, and deformation of exosomes immobilized on solid surfaces by atomic force microscopy (AFM). The key idea is combination of support vector machine (SVM) learning for individual exosome particles and their interpretation by principal component analysis (PCA). We observed exosomes derived from three different cancer cells on SiO2/Si, 3-aminopropyltriethoxysilane-modified-SiO2/Si, and TiO2 substrates by AFM. Then, 14-dimensional feature vectors were extracted from AFM particle data, and classifiers were trained in 14-dimensional space. The prediction accuracy for host cells of test AFM particles was examined by the cross-validation test. As a result, we obtained prediction of exosome host cells with the best accuracy of 85.2% for two-class SVM learning and 82.6% for three-class one. By PCA of the particle classifiers, we concluded that the main factors for prediction accuracy and its strong dependence on substrates are incremental decrease in the PCA-defined aspect ratio of the particles with their volume.
引用
收藏
页码:6224 / 6235
页数:12
相关论文
共 68 条
[1]   Exosomes with immune modulatory features are present in human breast milk [J].
Admyre, Charlotte ;
Johansson, Sara M. ;
Qazi, Khaleda Rahman ;
Filen, Jan-Jonas ;
Lahesmaa, Riitta ;
Norman, Mikael ;
Neve, Etienne P. A. ;
Scheynius, Annika ;
Gabrielsson, Susanne .
JOURNAL OF IMMUNOLOGY, 2007, 179 (03) :1969-1978
[2]   Intercellular transfer of the oncogenic receptor EGFrvIII by microvesicles derived from tumour cells [J].
Al-Nedawi, Khalid ;
Meehan, Brian ;
Micallef, Johann ;
Lhotak, Vladimir ;
May, Linda ;
Guha, Abhijit ;
Rak, Janusz .
NATURE CELL BIOLOGY, 2008, 10 (05) :619-U24
[3]   Malignant effusions and immunogenic tumour-derived exosomes [J].
Andre, F ;
Schartz, NEC ;
Movassagh, M ;
Flament, C ;
Pautier, P ;
Morice, P ;
Pomel, C ;
Lhomme, C ;
Escudier, B ;
Le Chevalier, T ;
Tursz, T ;
Amigorena, S ;
Raposo, G ;
Angevin, E ;
Zitvogel, L .
LANCET, 2002, 360 (9329) :295-305
[4]   Identification of a Conserved Glycan Signature for Microvesicles [J].
Batista, Bianca S. ;
Eng, William S. ;
Pilobello, Kanoelani T. ;
Hendricks-Munoz, Karen D. ;
Mahal, Lara K. .
JOURNAL OF PROTEOME RESEARCH, 2011, 10 (10) :4624-4633
[5]   Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo [J].
Bhatnagar, Sanchita ;
Shinagawa, Kazuhiko ;
Castellino, Francis J. ;
Schorey, Jeff Rey S. .
BLOOD, 2007, 110 (09) :3234-3244
[6]   Rab27a Supports Exosome-Dependent and -Independent Mechanisms That Modify the Tumor Microenvironment and Can Promote Tumor Progression [J].
Bobrie, Angelique ;
Krumeich, Sophie ;
Reyal, Fabien ;
Recchi, Chiara ;
Moita, Luis F. ;
Seabra, Miguel C. ;
Ostrowski, Matias ;
Thery, Clotilde .
CANCER RESEARCH, 2012, 72 (19) :4920-4930
[7]   Exosomes/microvesicles as a mechanism of cell-to-cell communication [J].
Camussi, Giovanni ;
Deregibus, Maria C. ;
Bruno, Stefania ;
Cantaluppi, Vincenzo ;
Biancone, Luigi .
KIDNEY INTERNATIONAL, 2010, 78 (09) :838-848
[8]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[9]   Size and shape characterization of hydrated and desiccated exosomes [J].
Chernyshev, Vasiliy S. ;
Rachamadugu, Rakesh ;
Tseng, Yen Hsun ;
Belnap, David M. ;
Jia, Yunlu ;
Branch, Kyle J. ;
Butterfield, Anthony E. ;
Pease, Leonard F., III ;
Bernard, Philip S. ;
Skliar, Mikhail .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2015, 407 (12) :3285-3301
[10]   Digital Detection of Exosomes by Interferometric Imaging [J].
Daaboul, George G. ;
Gagni, Paola ;
Benussi, Luisa ;
Bettotti, Paolo ;
Ciani, Miriam ;
Cretich, Marina ;
Freedman, David S. ;
Ghidoni, Roberta ;
Ozkumur, Ayca Yalcin ;
Piotto, Chiara ;
Prosperi, Davide ;
Santini, Benedetta ;
Unlu, M. Selim ;
Chiari, Marcella .
SCIENTIFIC REPORTS, 2016, 6