Knee Osteoarthritis Detection Using Power Spectral Density: Data from the OsteoArthritis Initiative

被引:3
作者
Brahim, Abdelbasset [1 ]
Riad, Rabia [2 ]
Jennane, Rachid [3 ]
机构
[1] IMT Atlantique, Brest, France
[2] Ibn Zohr Univ, Agadir, Morocco
[3] Univ Orleans, I3MTO Lab, EA 4708, F-45067 Orleans, France
来源
COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT II | 2019年 / 11679卷
关键词
Power spectral density; Independent component analysis; Classification; OsteoArthritis; INDEPENDENT COMPONENT ANALYSIS; TRABECULAR BONE TEXTURE; SUBCHONDRAL BONE; ARTICULAR-CARTILAGE; PROGRESSION; PREDICTION; OA;
D O I
10.1007/978-3-030-29891-3_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an aided diagnosis method for OsteoArthritis (OA) disease using knee X-ray imaging and spectral analysis is presented. The proposed method is based on the Power Spectral Density (PSD) over different orientations of the image as a feature for the classification task. Then, independent component analysis (ICA) is used to select the relevant PSD coefficients for OA detection. Finally, a logistic regression classifier is used to classify 688 knee X-ray images obtained from the Osteoarthritis Initiative (OAI). The proposed diagnosis approach yields classification results up to 78.92% of accuracy (with 79.65% of sensitivity and 78.20% of specificity). Thus, it outperforms several other recently developed OA diagnosis systems.
引用
收藏
页码:480 / 487
页数:8
相关论文
共 30 条
[1]  
[Anonymous], 2015, PLOS ONE, DOI DOI 10.1371/J0URNAL.P0NE.0130274
[2]  
Antony J, 2016, INT C PATT RECOG, P1195, DOI 10.1109/ICPR.2016.7899799
[3]   Intensity normalization of DaTSCAN SPECT imaging using a model-based clustering approach [J].
Brahim, A. ;
Gorriz, J. M. ;
Ramirez, J. ;
Khedher, L. .
APPLIED SOFT COMPUTING, 2015, 37 :234-244
[4]   Recent advances in osteoarthritis imaging-the Osteoarthritis Initiative [J].
Eckstein, Felix ;
Wirth, Wolfgang ;
Nevitt, Michael C. .
NATURE REVIEWS RHEUMATOLOGY, 2012, 8 (10) :622-630
[5]   Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis [J].
Goldring, Mary B. ;
Goldring, Steven R. .
SKELETAL BIOLOGY AND MEDICINE, 2010, 1192 :230-237
[6]  
Goldring S. R., 2006, Journal of Musculoskeletal & Neuronal Interactions, V6, P376
[7]  
Gonzalez R.C., 2006, PEARSON ED INDIA, V3rd
[8]   Quantification of differences in bone texture from plain radiographs in knees with and without osteoarthritis [J].
Hirvasniemi, J. ;
Thevenot, J. ;
Immonen, V. ;
Liikavainio, T. ;
Pulkkinen, P. ;
Jamsa, T. ;
Arokoski, J. ;
Saarakkala, S. .
OSTEOARTHRITIS AND CARTILAGE, 2014, 22 (10) :1724-1731
[9]   One dimensional local binary pattern for bone texture characterization [J].
Houam, Lotfi ;
Hafiane, Adel ;
Boukrouche, Abdelhani ;
Lespessailles, Eric ;
Jennane, Rachid .
PATTERN ANALYSIS AND APPLICATIONS, 2014, 17 (01) :179-193
[10]   Independent component analysis:: algorithms and applications [J].
Hyvärinen, A ;
Oja, E .
NEURAL NETWORKS, 2000, 13 (4-5) :411-430