Computing electromagnetic eigenmodes with continuous Galerkin approximations

被引:17
作者
Ciarlet, Patrick, Jr. [1 ]
Hechme, Grace [1 ]
机构
[1] ENSTA ParisTech, CNRS ENSTA INRIA, UMR 2706, Lab POEMS, F-75739 Paris 15, France
关键词
Electromagnetism; Continuous Galerkin discretization; Eigenvalues and eigenvectors computations;
D O I
10.1016/j.cma.2008.08.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Costabel and Dauge proposed a variational setting to solve numerically the time-harmonic Maxwell equations in 3D polyhedral geometries, with a continuous approximation of the electromagnetic field. In order to remove spurious eigenmodes, three computational strategies are then possible. The original method, which requires a parameterization of the variational formulation. The second method, which is based on an a posteriori filtering of the computed eigenmodes. And the third method, which uses a mixed variational setting so that all spurious modes are removed a priori. In this paper, we discuss the relative merits of the approaches, which are illustrated by a series of 3D numerical examples. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:358 / 365
页数:8
相关论文
共 26 条
[1]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[2]  
2-B
[3]   ON A FINITE-ELEMENT METHOD FOR SOLVING THE 3-DIMENSIONAL MAXWELL EQUATIONS [J].
ASSOUS, F ;
DEGOND, P ;
HEINTZE, E ;
RAVIART, PA ;
SEGRE, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 109 (02) :222-237
[4]  
Babuska I., 1991, Finite Element Methods, V2, P641
[5]   Three-dimensional finite element methods for the Stokes problem [J].
Boffi, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (02) :664-670
[6]  
Boffi D., 1997, ANN SCUOLA NORM SU S, V25, P131
[7]  
Boffi D, 2006, IMA VOL MATH APPL, V142, P121
[8]   Discrete compactness for the hp version of rectangular edge finite elements [J].
Boffi, Daniele ;
Costabel, Martin ;
Dauge, Monique ;
Demkowicz, Leszek .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (03) :979-1004
[9]  
Brezzi F., 1991, SPRINGER SERIES COMP, V15
[10]  
BUFFA A, NUMER MATH UNPUB