Membrane fusion by single influenza hemagglutinin trimers - Kinetic evidence from image analysis of hemagglutinin-reconstituted vesicles

被引:27
作者
Imai, M
Mizuno, T
Kawasaki, K [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Inst Biol Resources & Funct, AIST, Tsukuba, Ibaraki 3058566, Japan
[2] Natl Inst Infect Dis, Dept Virol 2, Tokyo 2080011, Japan
关键词
D O I
10.1074/jbc.M600902200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Influenza hemagglutinin, the receptor-binding and membrane fusion protein of the virus, is a prototypic model for studies of biological membrane fusion in general. To elucidate the minimum number of hemagglutinin trimers needed for fusion, the kinetics of fusion induced by reconstituted vesicles of hemagglutinin was studied by using single-vesicle image analysis. The surface density of hemagglutinin fusion-activity sites on the vesicles was varied, while keeping the surface density of receptor-binding activity sites constant, by co-reconstitution of the fusogenic form of hemagglutinin, HA(1,2), and the non-fusogenic form, HA(0), at various HA(1,2):(HA(1,2) + HA(0)) ratios. The rate of fusion between the hemagglutinin vesicles containing a fluorescent lipid probe, octadecylrhodamine B, and red blood cell ghost membranes was estimated from the time distribution of fusion events of single vesicles observed by fluorescence microscopy. The best fit of a log-log plot of fusion rate versus the surface density of HA(1,2) exhibited a slope of 0.85, strongly supporting the hypothesis that single hemagglutinin trimers are sufficient for fusion. When only HA(1,2) (without HA(0)) was reconstituted on vesicles, the dependence of fusion rate on the surface density of HA(1,2) was distinct from that for the HA(1,2)-HA(0) co-reconstitution. The latter result suggested interference with fusion activity by hemagglutinin-receptor binding, without having to assume a fusion mechanism involving multiple hemagglutinin trimers.
引用
收藏
页码:12729 / 12735
页数:7
相关论文
共 55 条
[1]   FUSION OF INFLUENZA-VIRUS WITH SIALIC ACID-BEARING TARGET MEMBRANES [J].
ALFORD, D ;
ELLENS, H ;
BENTZ, J .
BIOCHEMISTRY, 1994, 33 (08) :1977-1987
[2]   Minimal aggregate size and minimal fusion unit for the first fusion pore of influenza hemagglutinin-mediated membrane fusion [J].
Bentz, J .
BIOPHYSICAL JOURNAL, 2000, 78 (01) :227-245
[3]   INTERMEDIATES AND KINETICS OF MEMBRANE-FUSION [J].
BENTZ, J .
BIOPHYSICAL JOURNAL, 1992, 63 (02) :448-459
[4]   Membrane fusion [J].
Blumenthal, R ;
Clague, MJ ;
Durell, SR ;
Epand, RM .
CHEMICAL REVIEWS, 2003, 103 (01) :53-69
[5]   Dilation of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events [J].
Blumenthal, R ;
Sarkar, DP ;
Durell, S ;
Howard, DE ;
Morris, SJ .
JOURNAL OF CELL BIOLOGY, 1996, 135 (01) :63-71
[6]   Structure of influenza haemagglutinin at neutral and at fusogenic pH by electron cryo-microscopy [J].
Böttcher, C ;
Ludwig, K ;
Herrmann, A ;
van Heel, M ;
Stark, H .
FEBS LETTERS, 1999, 463 (03) :255-259
[7]   STRUCTURE OF INFLUENZA HEMAGGLUTININ AT THE PH OF MEMBRANE-FUSION [J].
BULLOUGH, PA ;
HUGHSON, FM ;
SKEHEL, JJ ;
WILEY, DC .
NATURE, 1994, 371 (6492) :37-43
[8]   A SPRING-LOADED MECHANISM FOR THE CONFORMATIONAL CHANGE OF INFLUENZA HEMAGGLUTININ [J].
CARR, CM ;
KIM, PS .
CELL, 1993, 73 (04) :823-832
[9]   Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation [J].
Chen, J ;
Lee, KH ;
Steinhauer, DA ;
Stevens, DJ ;
Skehel, JJ ;
Wiley, DC .
CELL, 1998, 95 (03) :409-417
[10]   DELAY TIME FOR INFLUENZA-VIRUS HEMAGGLUTININ-INDUCED MEMBRANE-FUSION DEPENDS ON HEMAGGLUTININ SURFACE-DENSITY [J].
CLAGUE, MJ ;
SCHOCH, C ;
BLUMENTHAL, R .
JOURNAL OF VIROLOGY, 1991, 65 (05) :2402-2407