Effect of field limestone applications on cadmium content of sunflower (Helianthus annuus L.) leaves and kernels

被引:21
|
作者
Li, YM [1 ]
Chaney, RL [1 ]
Schneiter, AA [1 ]
Johnson, BL [1 ]
机构
[1] N DAKOTA STATE UNIV, DEPT PLANT SCI, FARGO, ND 58105 USA
关键词
cadmium; limestone; sunflower;
D O I
10.1007/BF00015313
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Nonoilseed sunflower (Helianthus annuus L.) is naturally higher in cadmium (Cd) than many other grain crops. Because raising soil pH usually depresses Cd uptake by most species, a study was designed to determine if application of agricultural limestone to neutralize soil acidity would decrease Cd uptake by sunflower plants grown on different soils in the production area of North Dakota. The field experiments were conducted at 3 locations in 1991 and 2 locations in 1992. At each site, limestone was applied to bring soil pH to 6.5-7.0, or an additional 45 Mg ha(-1) more limestone was applied, and these two treatments were compared to no-lime control. Commercial nonoilseed hybrid 954 was planted in these experiments. The rapid short-term lime-soil reaction occurred in first 12 weeks following limestone application. Mean kernel Cd concentration for each treatment varied from 0.35 to 1.45 mg kg(-1) DW in the first year of the experiments, and from 0.37 to 1.23 mg kg(-1) DW in the experiments of 1992 across all locations. Large variations in kernel Cd levels between locations were obtained. There were no significant differences among control and limestone treatments for kernel Cd, seedling leaf Cd and diagnostic leaf Cd within each location, respectively. In regression analysis, we found that kernel Cd level correlated with diagnostic leaf Cd concentration in each treatment, but poor correlations were obtained among other variables. These results indicated that limestone application did not reduce Cd uptake and transfer to kernels of sunflower, in contrast with most species studied.
引用
收藏
页码:297 / 302
页数:6
相关论文
共 50 条
  • [31] Differential proteomics analysis in sunflower (Helianthus annuus L.)
    Enghelab Street, Sefiddasht City, Iran
    Biotechnology, 5 (245-247):
  • [32] FORTIFICATION OF SUNFLOWER PLANTS (HELIANTHUS ANNUUS L.) WITH SELENIUM
    Skarpa, Petr
    JOURNAL OF MICROBIOLOGY BIOTECHNOLOGY AND FOOD SCIENCES, 2013, 2 : 1569 - 1579
  • [33] Structure of the stigma and style in sunflower (Helianthus annuus L.)
    Gotelli, M. M.
    Galati, B. G.
    Medan, D.
    BIOCELL, 2010, 34 (03) : 133 - 138
  • [34] Validated markers for sunflower (Helianthus annuus L.) breeding
    Rauf, Saeed
    Warburton, Marilyn
    Naeem, Amina
    Kainat, Wardah
    OCL-OILSEEDS AND FATS CROPS AND LIPIDS, 2020, 27
  • [35] Aerodynamic properties of sunflower seed (Helianthus annuus L.)
    Gupta, R. K.
    Arora, Gopika
    Sharma, Rajiv
    JOURNAL OF FOOD ENGINEERING, 2007, 79 (03) : 899 - 904
  • [36] Toxicity and tolerance of nickel in sunflower (Helianthus annuus L.)
    Ahmad, Muhammad Sajid Aqeel
    Riffat, Alia
    Hussain, Mumtaz
    Hameed, Mansoor
    Alvi, Ambreen Khadija
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (17) : 50346 - 50363
  • [37] Toxicity and tolerance of nickel in sunflower (Helianthus annuus L.)
    Muhammad Sajid Aqeel Ahmad
    Alia Riffat
    Mumtaz Hussain
    Mansoor Hameed
    Ambreen Khadija Alvi
    Environmental Science and Pollution Research, 2023, 30 : 50346 - 50363
  • [38] Foliar fertilization with molybdenum in sunflower (Helianthus annuus L.)
    Skarpa, P.
    Kunzova, E.
    Zukalova, H.
    PLANT SOIL AND ENVIRONMENT, 2013, 59 (04) : 156 - 161
  • [39] Effect of wild Helianthus cytoplasms on agronomic and oil characteristics of cultivated sunflower (Helianthus annuus L.)
    Jan, Chao-Chien
    Seiler, Gerald J.
    Hammond, Jim J.
    PLANT BREEDING, 2014, 133 (02) : 262 - 267
  • [40] Sterol content in sunflower seeds (Helianthus annuus L.) as affected by genotypes and environmental conditions
    Roche, Jane
    Alignan, Marion
    Bouniols, Andree
    Cerny, Muriel
    Mouloungui, Zephirin
    Vear, Felicity
    Merah, Othmane
    FOOD CHEMISTRY, 2010, 121 (04) : 990 - 995