Validation of a novel very large eddy simulation method for simulation of turbulent separated flow

被引:41
|
作者
Han, Xingsi [1 ]
Krajnovic, Sinisa [1 ]
机构
[1] Chalmers Univ Technol, Dept Appl Mech, Div Fluid Dynam, S-41296 Gothenburg, Sweden
关键词
very LES (VLES); hybrid turbulence method; turbulent bluff body flow; circular cylinder; square cylinder; CIRCULAR-CYLINDER; HIGH-RESOLUTION; RANS; MODEL; WAKE; PREDICTION; DES; LES;
D O I
10.1002/fld.3807
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The paper describes the validation of a newly developed very LES (VLES) method for the simulation of turbulent separated flow. The new VLES method is a unified simulation approach that can change seamlessly from Reynolds-averaged Navier-Stokes to DNS depending on the numerical resolution. Four complex test cases are selected to validate the performance of the new method, that is, the flow past a square cylinder at Re=3000 confined in a channel (with a blockage ratio of 20%), the turbulent flow over a circular cylinder at Re=3900 as well as Re=140,000, and a turbulent backward-facing step flow with a thick incoming boundary layer at Re=40,000. The simulation results are compared with available experimental, LES, and detached eddy simulation-type results. The new VLES model performs well overall, and the predictions are satisfactory compared with previous experimental and numerical results. It is observed that the new VLES method is quite efficient for the turbulent flow simulations; that is, good predictions can be obtained using a quite coarse mesh compared with the previous LES method. Discussions of the implementation of the present VLES modeling are also conducted on the basis of the simulations of turbulent channel flow up to high Reynolds number of Re=4000. The efficiency of the present VLES modeling is also observed in the channel flow simulation. From a practical point of view, this new method has considerable potential for more complex turbulent flow simulations at relative high Reynolds numbers. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:436 / 461
页数:26
相关论文
共 50 条
  • [41] Large Eddy Simulation of Turbulent Flow Through Submerged Vegetation
    Thorsten Stoesser
    Guillermo Palau Salvador
    Wolfgang Rodi
    Panayiotis Diplas
    Transport in Porous Media, 2009, 78 : 347 - 365
  • [42] Large Eddy Simulation of Turbulent Flow Through Submerged Vegetation
    Stoesser, Thorsten
    Palau Salvador, Guillermo
    Rodi, Wolfgang
    Diplas, Panayiotis
    TRANSPORT IN POROUS MEDIA, 2009, 78 (03) : 347 - 365
  • [43] Large-eddy Simulation of Transient Turbulent Flow in a Pipe
    Jung, Seo Yoon
    Chung, Yongmann M.
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2008, 32 (09) : 720 - 727
  • [44] On integrating large eddy simulation and laboratory turbulent flow experiments
    Grinstein, Fernando F.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 367 (1899): : 2931 - 2945
  • [45] Computing turbulent flow dynamics with implicit large eddy simulation
    Grinstein, Fernando F.
    Drikakis, Dimitris
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2007, 129 (12): : 1481 - 1482
  • [46] Large eddy simulation of turbulent flow over an open cavity
    Choi, HC
    Hahn, SY
    Choi, JH
    ADVANCES IN TURBULENCE VIII, 2000, : 105 - 108
  • [47] Large eddy simulation of turbulent flow in a square annular duct
    Xu, HY
    Pollard, A
    PHYSICS OF FLUIDS, 2001, 13 (11) : 3321 - 3337
  • [48] LARGE EDDY SIMULATION OF PARTICLE DEPOSITION IN A TURBULENT CHANNEL FLOW
    Rahnama, Mohammad
    Salmanzadeh, Mazyar
    Ahmadi, Goodarz
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE -2008, VOL 1, PT A AND B, 2009, : 167 - 172
  • [49] LARGE EDDY SIMULATION OF PULSATING TURBULENT OPEN CHANNEL FLOW
    Zou Li-yong
    Liu Nan-sheng
    Lu Xi-yun
    JOURNAL OF HYDRODYNAMICS, 2004, 16 (06) : 681 - 686
  • [50] Large-eddy simulation of turbulent flow in a street canyon
    Cui, ZQ
    Cai, XM
    Baker, CJ
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2004, 130 (599) : 1373 - 1394