Photocatalytic reduction of chromium(VI) in aqueous solution using dye-sensitized nanoscale ZnO under visible light irradiation

被引:82
作者
Yang, Gordon C. C. [1 ]
Chan, Sheng-Wei [1 ]
机构
[1] Natl Sun Yat Sen Univ, Inst Environm Engn, Kaohsiung 80424, Taiwan
关键词
Photocatalysis; Chromium(VI); Dye-sensitized; Nanoscale ZnO; Visible light irradiation; Nanotechnology; Occupational health; EHS; DEGRADATION; TIO2; PHOTODEGRADATION; NANOPARTICLES; CR(VI); WATER;
D O I
10.1007/s11051-008-9423-y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photocatalytic removal of Cr6+ from aqueous solution using dye-sensitized nanoscale ZnO under visible light irradiation was studied in this work. First, nanoscale ZnO was prepared by the co-precipitation method. Then, sensitization of nanoscale ZnO by Alizarin Red S dye followed. Further, nanoscale ZnO and dye-sensitized nanoscale ZnO (designated nanoZnO and nanoZnO*, respectively) were both characterized by various photospectrometry methods, such as scanning electron microscopy (SEM), scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS), EDS-mapping, transmission electron microscopy (TEM), and X-ray diffractometry (XRD). It was found that both types of prepared particles are spherical in shape with a size range of 20 to 50 nm. XRD patterns showed that both nanoZnO and nanoZnO* had the same crystalline structure of zincite. In the photocatalytic reduction aspect, effects of different light sources and dosage of nanoZnO* on Cr6+ reduction ([Cr6+](initial) = 20 mg/L) were evaluated in this work. Treatment of chromium(VI)-bearing wastewater under the conditions of using 1.0 g/L of nanoZnO*, neutral pH, irradiation of household fluorescence lamps for 6 h and 17 h would yield Cr6+ removal efficiencies of about 68% and 90%, respectively. When the household fluorescence lamps were replaced by visible-light lamps of 400-500 nm in wavelength, the corresponding removal efficiencies dropped to about 50% and 75%, respectively. When nanoZnO* was irradiated by sunlight under almost the same experimental conditions, the Cr6+ reduction efficiency increased up to 90%. In summary, sensitizing nanoscale ZnO with Alizarin Red S dye for photocatalytic applications using visible light is feasible. The relevant reaction mechanism and pathways were also proposed in this work.
引用
收藏
页码:221 / 230
页数:10
相关论文
共 31 条
[1]   Photocatalytic decolorization of remazol red RR in aqueous ZnO suspensions [J].
Akyol, A ;
Yatmaz, HC ;
Bayramoglu, M .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2004, 54 (01) :19-24
[2]   Highly enhanced photoreductive degradation of perchlorinated compounds on dye-sensitized metal/TiO2 under visible light [J].
Bae, E ;
Choi, W .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (01) :147-152
[3]   Kinetic study on photocatalytic degradation of CI Acid Yellow 23 by ZnO photocatalyst [J].
Behnajady, M. A. ;
Modirshahla, N. ;
Hamzavi, R. .
JOURNAL OF HAZARDOUS MATERIALS, 2006, 133 (1-3) :226-232
[4]   Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst [J].
Chakrabarti, S ;
Dutta, BK .
JOURNAL OF HAZARDOUS MATERIALS, 2004, 112 (03) :269-278
[5]   Visible light assisted photodegradation of halocarbons on the dye modified TiO2 surface using visible light [J].
Chatterjee, D ;
Dasgupta, S ;
Rao, NN .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2006, 90 (7-8) :1013-1020
[6]   Degradation pathways of ethyl violet by photocatalytic reaction with ZnO dispersions [J].
Chen, Chiing-Chang .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2007, 264 (1-2) :82-92
[7]   Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices [J].
Chen, Peiliang ;
Ma, Xiangyang ;
Yang, Deren .
APPLIED PHYSICS LETTERS, 2006, 89 (11)
[8]   Visible light activity of TiO2 for the photoreduction of CCl4 and Cr(VI) in the presence of nonionic surfactant (Brij) [J].
Cho, YM ;
Kyung, H ;
Choi, W .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2004, 52 (01) :23-32
[9]   Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2 [J].
Cho, YM ;
Choi, WY ;
Lee, CH ;
Hyeon, T ;
Lee, HI .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2001, 35 (05) :966-970
[10]   Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2 [J].
Daneshvar, N ;
Salari, D ;
Khataee, AR .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2004, 162 (2-3) :317-322