Hausdorff dimension of boundaries of self-affine tiles in RN

被引:0
作者
Veerman, JJP [1 ]
机构
[1] UFPE, Dept Matemat, Recife, PE, Brazil
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 1998年 / 4卷 / 02期
关键词
Hausdorff dimension; boundaries of self affine tiles; iterated function system;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new method to calculate the Hausdorff dimension of a certain class of fractals: boundaries of self-affine tiles. Among the interesting aspects are that even if the affine contraction underlying the iterated function system is not conjugated to a similarity we obtain an upper- and and lower-bound for its Hausdorff dimension. In fact, we obtain the exact value for the dimension if the moduli of the eigenvalues of the underlying affine contraction are all equal (this includes Jordan blocks). The tiles we discuss play an important role in the theory of wavelets. We calculate the dimension for a number of examples.
引用
收藏
页码:159 / 182
页数:24
相关论文
共 50 条
[31]   Digit sets of integral self-affine tiles with prime determinant [J].
Li, Jian-Lin .
STUDIA MATHEMATICA, 2006, 177 (02) :183-194
[32]   Dimension spectrum of infinite self-affine iterated function systems [J].
Natalia Jurga .
Selecta Mathematica, 2021, 27
[33]   Dimension spectrum of infinite self-affine iterated function systems [J].
Jurga, Natalia .
SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (03)
[34]   The dimension of projections of planar diagonal self-affine measures [J].
Pyorala, Aleksi .
ANNALES FENNICI MATHEMATICI, 2025, 50 (01) :59-78
[35]   Dimension of self-affine sets for fixed translation vectors [J].
Barany, Balazs ;
Kaenmaki, Antti ;
Koivusalo, Henna .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 :223-252
[36]   On the dimension of planar self-affine sets with non-invertible maps [J].
Barany, Balazs ;
Kortvelyesi, Viktor .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023,
[37]   THE ASSOUAD DIMENSION OF SELF-AFFINE CARPETS WITH NO GRID STRUCTURE [J].
Fraser, Jonathan M. ;
Jordan, Thomas .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (11) :4905-4918
[38]   Hausdorff Dimension for Randomly Perturbed Self Affine Attractors [J].
Thomas Jordan ;
Mark Pollicott ;
Károly Simon .
Communications in Mathematical Physics, 2007, 270 :519-544
[39]   Hausdorff dimension for randomly perturbed self affine attractors [J].
Jordan, Thomas ;
Pollicott, Mark ;
Simon, Karoly .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :519-544
[40]   A class of self-affine sets and self-affine measures [J].
Feng, DJ ;
Wang, Y .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (01) :107-124