How Correlations Influence Lasso Prediction

被引:63
作者
Hebiri, Mohamed [1 ]
Lederer, Johannes [2 ]
机构
[1] Univ Paris Est Marne La Vallee, F-77454 Champs Sur Marne, France
[2] Swiss Fed Inst Technol, CH-8006 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Correlations; Lars algorithm; Lasso; restricted eigenvalue; tuning parameter; OPTIMAL RATES; SELECTION;
D O I
10.1109/TIT.2012.2227680
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study how correlations in the design matrix influence Lasso prediction. First, we argue that the higher the correlations, the smaller the optimal tuning parameter. This implies in particular that the standard tuning parameters, that do not depend on the design matrix, are not favorable. Furthermore, we argue that Lasso prediction works well for any degree of correlations if suitable tuning parameters are chosen. We study these two subjects theoretically as well as with simulations.
引用
收藏
页码:1846 / 1854
页数:9
相关论文
共 28 条
[1]   Transductive versions of the LASSO and the Dantzig Selector [J].
Alquier, Pierre ;
Hebiri, Mohamed .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (09) :2485-2500
[2]  
[Anonymous], LECT NOTES STAT
[3]  
[Anonymous], IMS COLLECT IN PRESS
[4]  
[Anonymous], BOUNDS RADEMACHER PR
[5]  
[Anonymous], PROBAB THEO IN PRESS
[6]  
Bach F, 2012, OPTIMIZATION FOR MACHINE LEARNING, P19
[7]   SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR [J].
Bickel, Peter J. ;
Ritov, Ya'acov ;
Tsybakov, Alexandre B. .
ANNALS OF STATISTICS, 2009, 37 (04) :1705-1732
[8]  
Bühlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9
[9]   Sparsity oracle inequalities for the Lasso [J].
Bunea, Florentina ;
Tsybakov, Alexandre ;
Wegkamp, Marten .
ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 :169-194
[10]   Aggregation for gaussian regression [J].
Bunea, Florentina ;
Tsybakov, Alexandre B. ;
Wegkamp, Marten H. .
ANNALS OF STATISTICS, 2007, 35 (04) :1674-1697