Adjoint-based iterative method for robust control problems in fluid mechanics

被引:6
作者
Medjo, TT [1 ]
Tebou, LRT [1 ]
机构
[1] Florida Int Univ, Dept Math, Miami, FL 33199 USA
关键词
robust control; fluid mechanics; Navier-Stokes; iterative methods;
D O I
10.1137/S0036142902416231
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the convergence of an adjoint-based iterative method recently proposed in [T. R. Bewley, R. Temam, and M. Ziane, Phys. D, 138 (2000), pp. 360-392] for the numerical solution of a class of nonlinear robust control problems in fluid mechanics. Under weaker assumptions than those of [T. Tachim Medjo, Numer. Funct. Anal. Optim., 23 (2002), pp. 849-873], we prove the convergence of the algorithm, and we obtain an estimate of the convergence rate. Numerical solutions of a robust control problem related to data assimilation in oceanography are presented to illustrate the method.
引用
收藏
页码:302 / 325
页数:24
相关论文
共 34 条
[11]  
HOLLAND WR, 1980, J PHYS OCEANOGR, V10, P1010, DOI 10.1175/1520-0485(1980)010<1010:AEOEIO>2.0.CO
[12]  
2
[13]   Optimal control of thermally convected fluid flows [J].
Ito, K ;
Ravindran, SS .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06) :1847-1869
[14]  
Lions J. L., 1993, Computational Mechanics Advances, V1, P55
[15]  
LIONS JL, 1993, COMPUTATIONAL MECH A, V1, P3
[16]  
Lions JL., 1970, OPTIMAL CONTROL SYST
[17]  
Marchuk G. I., 1993, RUSS J NUMER ANAL M, V8, P311, DOI [DOI 10.1515/RNAM.1993.8.4.311, 10.1515/rnam.1993.8.4.311]
[18]  
Marchuk G.I., 1975, METHODS NUMERICAL MA
[19]  
Marchuk G.I., 1986, NUMERICAL METHODS TH, V2nd
[20]   ITERATION METHODS FOR SOLVING A DATA ASSIMILATION PROBLEM [J].
MARCHUK, GI ;
SHUTYAEV, VP .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 1994, 9 (03) :265-279