Adjoint-based iterative method for robust control problems in fluid mechanics

被引:6
作者
Medjo, TT [1 ]
Tebou, LRT [1 ]
机构
[1] Florida Int Univ, Dept Math, Miami, FL 33199 USA
关键词
robust control; fluid mechanics; Navier-Stokes; iterative methods;
D O I
10.1137/S0036142902416231
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we study the convergence of an adjoint-based iterative method recently proposed in [T. R. Bewley, R. Temam, and M. Ziane, Phys. D, 138 (2000), pp. 360-392] for the numerical solution of a class of nonlinear robust control problems in fluid mechanics. Under weaker assumptions than those of [T. Tachim Medjo, Numer. Funct. Anal. Optim., 23 (2002), pp. 849-873], we prove the convergence of the algorithm, and we obtain an estimate of the convergence rate. Numerical solutions of a robust control problem related to data assimilation in oceanography are presented to illustrate the method.
引用
收藏
页码:302 / 325
页数:24
相关论文
共 34 条
[1]  
Abergel F., 1990, THEOR COMP FLUID DYN, V1, P303, DOI [DOI 10.1007/BF00271794, 10.1007/bf00271794]
[2]  
Agoshkov V. I., 1993, RUSS J NUMER ANAL M, V8, P1, DOI 10.1515/rnam.1993.8.1.1
[3]  
Arakawa A., 1966, J COMPUT PHYS, V1, P119, DOI [DOI 10.1016/0021-9991(66)90015-5, 10.1016/0021-9991(66)90015-5]
[4]   EXISTENCE OF SOLUTIONS TO THE STOMMEL-CHARNEY MODEL OF THE GULF-STREAM [J].
BARCILON, V ;
CONSTANTIN, P ;
TITI, ES .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (06) :1355-1364
[5]   A general framework for robust control in fluid mechanics [J].
Bewley, TR ;
Teman, R ;
Ziane, M .
PHYSICA D, 2000, 138 (3-4) :360-392
[6]   Optimal and robust control and estimation of linear paths to transition [J].
Bewley, TR ;
Liu, S .
JOURNAL OF FLUID MECHANICS, 1998, 365 :305-349
[7]   VALIDITY OF THE QUASI-GEOSTROPHIC MODEL FOR LARGE-SCALE FLOW IN THE ATMOSPHERE AND OCEAN [J].
BOURGEOIS, AJ ;
BEALE, JT .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (04) :1023-1068
[8]  
CHASSIGNET EP, 1995, J PHYS OCEANOGR, V25, P242, DOI 10.1175/1520-0485(1995)025<0242:VDBWBC>2.0.CO
[9]  
2
[10]   Existence of an optimal solution of a shape control problem for the stationary Navier-Stokes equations [J].
Gunzburger, MD ;
Kim, H .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (03) :895-909