Can we make a robot ballerina perform a pirouette? Orbital stabilization of periodic motions of underactuated mechanical systems

被引:62
作者
Shiriaev, A. S. [1 ,2 ]
Freidovich, L. B. [1 ]
Manchester, I. R. [1 ]
机构
[1] Umea Univ, Dept Appl Phys & Elect, SE-90187 Umea, Sweden
[2] Norwegian Univ Sci & Technol, Dept Engn Cybernet, NO-7491 Trondheim, Norway
关键词
Periodic motion planning; Poincare first-return map; Orbital stabilization; Transverse linearization; Virtual holonomic constraints;
D O I
10.1016/j.arcontrol.2008.07.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper provides an introduction to several problems and techniques related to controlling periodic motions of dynamical systems. In particular, we consider planning periodic motions and designing feedback controllers for orbital stabilization. We review classical and recent design methods based on the Poincare first-return map and the transverse linearization. We begin with general nonlinear systems and then specialize to a class of underactuated mechanical systems for which a particularly rich structure allows many of the problems to be solved analytically. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:200 / 211
页数:12
相关论文
共 87 条
  • [11] RABBIT: A testbed for advanced control theory
    Chevallereau, C
    Abba, G
    Aoustin, Y
    Plestan, F
    Westervelt, ER
    Canudas-de-Wit, C
    Grizzle, JW
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2003, 23 (05): : 57 - 79
  • [12] Asymptotically stable running for a five-link, four-actuator, planar, bipedal robot
    Chevallereau, C
    Westervelt, ER
    Grizzle, JW
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2005, 24 (06) : 431 - 464
  • [13] Tracking a joint path for the walk of an underactuated biped
    Chevallereau, C
    Formal'sky, A
    Djoudi, D
    [J]. ROBOTICA, 2004, 22 : 15 - 28
  • [14] Chung CC, 1997, SYST CONTROL LETT, V30, P127
  • [15] NONLINEAR CONTROL OF A SWINGING PENDULUM
    CHUNG, CC
    HAUSER, J
    [J]. AUTOMATICA, 1995, 31 (06) : 851 - 862
  • [16] Lie algebra application to mobile robot control: a tutorial
    Coelho, P
    Nunes, U
    [J]. ROBOTICA, 2003, 21 (05) : 483 - 493
  • [17] Theoretical aspects of continuous-time periodic systems
    Colaneri, P
    [J]. ANNUAL REVIEWS IN CONTROL, 2005, 29 (02) : 205 - 215
  • [18] Dynamic analysis of rectilinear motion of a self-propelling disk with unbalance masses
    Das, T
    Mukherjee, R
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2001, 68 (01): : 58 - 66
  • [19] DUINDAM V, 2005, P 16 IFAC WORLD C
  • [20] Fossen T. I., 2002, Marine Control Systems: Guidance, Navigation, and Control of Ships, Rigs and Underwater vehicles