Spatial and temporal variability of N2O emissions in a subtropical forest catchment in China

被引:48
|
作者
Zhu, J. [1 ]
Mulder, J. [1 ]
Wu, L. P. [2 ]
Meng, X. X. [2 ]
Wang, Y. H. [3 ]
Dorsch, P. [1 ]
机构
[1] Norwegian Univ Life Sci, N-1432 As, Norway
[2] Chongqing Acad Environm Sci & Monitoring, Chongqing 401147, Peoples R China
[3] Chinese Acad Forestry, Inst Forest Ecol Environm & Protect, Beijing 100091, Peoples R China
关键词
NITROUS-OXIDE EMISSIONS; TROPICAL RAIN-FOREST; DIFFERENT LAND USES; CARBON-DIOXIDE; GAS FLUXES; SOIL; DENITRIFICATION; NITRIFICATION; ECOSYSTEMS; DEPOSITION;
D O I
10.5194/bg-10-1309-2013
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Subtropical forests in southern China have received chronically large amounts of atmogenic nitrogen (N), causing N saturation. Recent studies suggest that a significant proportion of the N input is returned to the atmosphere, in part as nitrous oxide (N2O). We measured N2O emission fluxes by closed chamber technique throughout two years in a Masson pine-dominated headwater catchment with acrisols (pH similar to 4) at Tieshanping (Chongqing, SW China) and assessed the spatial and temporal variability in two landscape elements typical for this region: a mesic forested hillslope (HS) and a hydrologically connected, terraced groundwater discharge zone (GDZ) in the valley bottom. High emission rates of up to 1800 mu g N2O-N m(-2) h(-1) were recorded on the HS shortly after rain storms during monsoonal summer, whereas emission fluxes during the dry winter season were generally low. Overall, N2O emission was lower in GDZ than on HS, rendering the mesic HS the dominant source of N2O in this landscape. Temporal variability of N2O emissions on HS was largely explained by soil temperature (ST) and moisture, pointing at denitrification as a major process for N removal and N2O production. The concentration of nitrate (NO3-) in pore water on HS was high even in the rainy season, apparently never limiting denitrification and N2O production. The concentration of NO3- decreased along the terraced GDZ, indicating efficient N removal, but with moderate N2O-N loss. The extrapolated annual N2O fluxes from soils on HS (0.54 and 0.43 g N2O-N m(-2) yr(-1) for a year with a wet and a dry summer, respectively) are among the highest N2O fluxes reported from subtropical forests so far. Annual N2O-N emissions amounted to 8-10% of the annual atmogenic N deposition, suggesting that forests on acid soils in southern China are an important, hitherto overlooked component of the anthropogenic N2O budget.
引用
收藏
页码:1309 / 1321
页数:13
相关论文
共 50 条
  • [21] NO and N2O emissions from agricultural fields in the North China Plain: Origination and mitigation
    Zhang, Yuanyuan
    Mu, Yujing
    Zhou, Yizhen
    Tian, Di
    Liu, Junfeng
    Zhang, Chenglong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2016, 551 : 197 - 204
  • [22] Seasonal change in N2O flux from forest soils in a forest catchment in Japan
    Morishita, Tomoaki
    Aizawa, Shuhei
    Yoshinaga, Shuichiro
    Kaneko, Shinji
    JOURNAL OF FOREST RESEARCH, 2011, 16 (05) : 386 - 393
  • [23] Annual dynamics of N2O emissions from a tea field in southern subtropical China
    Fu, X. Q.
    Li, Y.
    Su, W. J.
    Shen, J. L.
    Xiao, R. L.
    Tong, C. L.
    Wu, J.
    PLANT SOIL AND ENVIRONMENT, 2012, 58 (08) : 373 - 378
  • [24] Amplitude and frequency of wetting and drying cycles drive N2 and N2O emissions from a subtropical pasture
    Friedl, Johannes
    Deltedesco, Evi
    Keiblinger, Katharina M.
    Gorfer, Markus
    De Rosa, Daniele
    Scheer, Clemens
    Grace, Peter R.
    Rowlings, David W.
    BIOLOGY AND FERTILITY OF SOILS, 2022, 58 (05) : 593 - 605
  • [25] Decreased soil N2O and N2 emissions during the succession of subtropical forests
    Yuan, Mingyue
    Li, Ping
    Lu, Zhiyun
    Chen, Zhe
    PLANT AND SOIL, 2024,
  • [26] Simulated warming and low O2 promote N2O and N2 emissions in subtropical montane forest soil
    Xiong Yang
    Yingmo Zhu
    Yunjian Xu
    Xiangnan Li
    Shuting Zhang
    Qindong Qian
    Lingling Wang
    Jianping Wu
    Zhe Chen
    Journal of Soils and Sediments, 2022, 22 : 2706 - 2719
  • [27] The effect of floating vegetation on CH4 and N2O emissions from subtropical paddy fields in China
    Wang, Chun
    Li, Shouchun
    Lai, Derrick Y. F.
    Wang, Weiqi
    Ma, Yongyue
    PADDY AND WATER ENVIRONMENT, 2015, 13 (04) : 425 - 431
  • [28] Spatial Variations of N2O Fluxes Across the Water-Air Interface of Mariculture Ponds in a Subtropical Estuary in Southeast China
    Yang, Ping
    Wang, Dongqi
    Lai, Derrick Y. F.
    Zhang, Yifei
    Guo, Qianqian
    Tan, Lishan
    Yang, Hong
    Tong, Chuan
    Li, Xiaofei
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2020, 125 (09)
  • [29] Control of NO3 - and N2O emissions in agroecosystems: A review
    Benckiser, Gero
    Schartel, Tanja
    Weiske, Achim
    AGRONOMY FOR SUSTAINABLE DEVELOPMENT, 2015, 35 (03) : 1059 - 1074
  • [30] Dynamics and emissions of N2O in groundwater: A review
    Jurado, Anna
    Borges, Alberto V.
    Brouyere, Serge
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 584 : 207 - 218