共 50 条
Spatial and temporal variability of N2O emissions in a subtropical forest catchment in China
被引:48
|作者:
Zhu, J.
[1
]
Mulder, J.
[1
]
Wu, L. P.
[2
]
Meng, X. X.
[2
]
Wang, Y. H.
[3
]
Dorsch, P.
[1
]
机构:
[1] Norwegian Univ Life Sci, N-1432 As, Norway
[2] Chongqing Acad Environm Sci & Monitoring, Chongqing 401147, Peoples R China
[3] Chinese Acad Forestry, Inst Forest Ecol Environm & Protect, Beijing 100091, Peoples R China
关键词:
NITROUS-OXIDE EMISSIONS;
TROPICAL RAIN-FOREST;
DIFFERENT LAND USES;
CARBON-DIOXIDE;
GAS FLUXES;
SOIL;
DENITRIFICATION;
NITRIFICATION;
ECOSYSTEMS;
DEPOSITION;
D O I:
10.5194/bg-10-1309-2013
中图分类号:
Q14 [生态学(生物生态学)];
学科分类号:
071012 ;
0713 ;
摘要:
Subtropical forests in southern China have received chronically large amounts of atmogenic nitrogen (N), causing N saturation. Recent studies suggest that a significant proportion of the N input is returned to the atmosphere, in part as nitrous oxide (N2O). We measured N2O emission fluxes by closed chamber technique throughout two years in a Masson pine-dominated headwater catchment with acrisols (pH similar to 4) at Tieshanping (Chongqing, SW China) and assessed the spatial and temporal variability in two landscape elements typical for this region: a mesic forested hillslope (HS) and a hydrologically connected, terraced groundwater discharge zone (GDZ) in the valley bottom. High emission rates of up to 1800 mu g N2O-N m(-2) h(-1) were recorded on the HS shortly after rain storms during monsoonal summer, whereas emission fluxes during the dry winter season were generally low. Overall, N2O emission was lower in GDZ than on HS, rendering the mesic HS the dominant source of N2O in this landscape. Temporal variability of N2O emissions on HS was largely explained by soil temperature (ST) and moisture, pointing at denitrification as a major process for N removal and N2O production. The concentration of nitrate (NO3-) in pore water on HS was high even in the rainy season, apparently never limiting denitrification and N2O production. The concentration of NO3- decreased along the terraced GDZ, indicating efficient N removal, but with moderate N2O-N loss. The extrapolated annual N2O fluxes from soils on HS (0.54 and 0.43 g N2O-N m(-2) yr(-1) for a year with a wet and a dry summer, respectively) are among the highest N2O fluxes reported from subtropical forests so far. Annual N2O-N emissions amounted to 8-10% of the annual atmogenic N deposition, suggesting that forests on acid soils in southern China are an important, hitherto overlooked component of the anthropogenic N2O budget.
引用
收藏
页码:1309 / 1321
页数:13
相关论文