On the Challenges of Mobile Crowdsensing for Traffic Estimation

被引:8
|
作者
Gil, Daniela Socas [1 ,2 ]
d'Orey, Pedro M. [3 ]
Aguiar, Ana [3 ]
机构
[1] Univ Simon Bolivar, Caracas, Venezuela
[2] Univ Porto, Porto, Portugal
[3] Univ Porto, Inst Telecomunicacoes, Porto, Portugal
来源
PROCEEDINGS OF THE 15TH ACM CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS (SENSYS'17) | 2017年
关键词
Crowdsensing; traffic estimation;
D O I
10.1145/3131672.3136958
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traffic congestion adversely impacts our lives. Traffic estimation resorting to mobile (crowdsensing) probes is a challenging task. We present key challenges for accurate and real-time traffic estimation resorting to crowdsensing data, namely data sparsity, user trip diversity, population bias, data quality, among others. We propose solutions to address some of these issues and demonstrate the relevance of others through an exploratory data analysis.
引用
收藏
页数:2
相关论文
共 50 条
  • [41] How Sustainable is Social Based Mobile Crowdsensing? An Experimental Study
    Bermejo, Carlos
    Chatzopoulos, Dimitris
    Hui, Pan
    2016 IEEE 24TH INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (ICNP), 2016,
  • [42] CBDTF: A Distributed and Trustworthy Data Trading Framework for Mobile Crowdsensing
    Gu, Bo
    Hu, Weiwei
    Gong, Shimin
    Su, Zhou
    Guizani, Mohsen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (03) : 4207 - 4218
  • [43] Decentralized Online Learning in Task Assignment Games for Mobile Crowdsensing
    Simon, Bernd
    Ortiz, Andrea
    Saad, Walid
    Klein, Anja
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (08) : 4945 - 4960
  • [44] Social Learning Based Inference for Crowdsensing in Mobile Social Networks
    Meng, Yue
    Jiang, Chunxiao
    Quek, Tony Q. S.
    Han, Zhu
    Ren, Yong
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2018, 17 (08) : 1966 - 1979
  • [45] A Mobile Edge-Based CrowdSensing Framework for Heterogeneous IoT
    Lamaazi, Hanane
    Mizouni, Rabeb
    Singh, Shakti
    Otrok, Hadi
    IEEE ACCESS, 2020, 8 (207524-207536) : 207524 - 207536
  • [46] Bilateral Privacy-Preserving Truthful Incentive for Mobile Crowdsensing
    Zhong, Ying
    Zhang, Xinglin
    IEEE SYSTEMS JOURNAL, 2022, 16 (02): : 3308 - 3319
  • [47] Real-Time Target Tracking Through Mobile Crowdsensing
    Shi, Jinyu
    Jia, Weijia
    WEB INFORMATION SYSTEMS ENGINEERING, WISE 2017, PT II, 2017, 10570 : 3 - 18
  • [48] Multi-Task Assignment for CrowdSensing in Mobile Social Networks
    Xiao, Mingjun
    Wu, Jie
    Huang, Liusheng
    Wang, Yunsheng
    Liu, Cong
    2015 IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (INFOCOM), 2015,
  • [49] Encrypted Data Aggregation in Mobile CrowdSensing based on Differential Privacy
    Girolami, Michele
    Urselli, Emanuele
    Chessa, Stefano
    2022 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS (PERCOM WORKSHOPS), 2022,
  • [50] Location-dependent Task Assignment for Opportunistic Mobile Crowdsensing
    Yucel, Fatih
    Bulut, Eyuphan
    2020 IEEE 17TH ANNUAL CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE (CCNC 2020), 2020,