On the Challenges of Mobile Crowdsensing for Traffic Estimation

被引:8
|
作者
Gil, Daniela Socas [1 ,2 ]
d'Orey, Pedro M. [3 ]
Aguiar, Ana [3 ]
机构
[1] Univ Simon Bolivar, Caracas, Venezuela
[2] Univ Porto, Porto, Portugal
[3] Univ Porto, Inst Telecomunicacoes, Porto, Portugal
来源
PROCEEDINGS OF THE 15TH ACM CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS (SENSYS'17) | 2017年
关键词
Crowdsensing; traffic estimation;
D O I
10.1145/3131672.3136958
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traffic congestion adversely impacts our lives. Traffic estimation resorting to mobile (crowdsensing) probes is a challenging task. We present key challenges for accurate and real-time traffic estimation resorting to crowdsensing data, namely data sparsity, user trip diversity, population bias, data quality, among others. We propose solutions to address some of these issues and demonstrate the relevance of others through an exploratory data analysis.
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Encounter Probability Aware Task Assignment in Mobile Crowdsensing
    Hong Yao
    Muzhou Xiong
    Chao Liu
    Qingzhong Liang
    Mobile Networks and Applications, 2017, 22 : 275 - 286
  • [32] Privacy-Preserving Incentive Mechanisms for Mobile Crowdsensing
    Zhang, Xinglin
    Liang, Lingyu
    Luo, Chengwen
    Cheng, Long
    IEEE PERVASIVE COMPUTING, 2018, 17 (03) : 47 - 57
  • [33] A mobile crowdsensing app for improved maritime security and awareness
    Moroni, Davide
    Pieri, Gabriele
    Reggiannini, Marco
    Tampucci, Marco
    2022 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS (PERCOM WORKSHOPS), 2022,
  • [34] Quality-based User Recruitment in Mobile CrowdSensing
    Lin, Yu
    Wu, Fan
    Kong, Linghe
    Chen, Guihai
    2018 14TH INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SENSOR NETWORKS (MSN 2018), 2018, : 74 - 80
  • [35] Understanding the Lifestyle of Older Population: Mobile Crowdsensing Approach
    Marakkalage, Sumudu Hasala
    Sarica, Serhad
    Lau, Billy Pik Lik
    Viswanath, Sanjana Kadaba
    Balasubramaniam, Thirunavukarasu
    Yuen, Chau
    Yuen, Belinda
    Luo, Jianxi
    Nayak, Richi
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2019, 6 (01) : 82 - 95
  • [36] Analyzing crowdsourcing to teach mobile crowdsensing a few lessons
    Ahmed, Tanveer
    Srivastava, Abhishek
    COGNITION TECHNOLOGY & WORK, 2018, 20 (03) : 457 - 475
  • [37] Human in the Loop: Distributed Deep Model for Mobile Crowdsensing
    Li, Liangzhi
    Ota, Kaoru
    Dong, Mianxiong
    IEEE INTERNET OF THINGS JOURNAL, 2018, 5 (06): : 4957 - 4964
  • [38] Optimizing Mobile Crowdsensing Platforms for Boundedly Rational Users
    Karaliopoulos, Merkouris
    Bakali, Eleni
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (04) : 1305 - 1318
  • [39] Optimal Mobile Crowdsensing Incentive Under Sensing Inaccuracy
    Dong, Xuewen
    You, Zhichao
    Luan, Tom H.
    Yao, Qingsong
    Shen, Yulong
    Ma, Jianfeng
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (10): : 8032 - 8043
  • [40] FIRST: A Framework for Optimizing Information Quality in Mobile Crowdsensing Systems
    Restuccia, Francesco
    Ferraro, Pierluca
    Sanders, Timothy S.
    Silvestri, Simone
    Das, Sajal K.
    Lo Re, Giuseppe
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2019, 15 (01)