On the Challenges of Mobile Crowdsensing for Traffic Estimation

被引:8
|
作者
Gil, Daniela Socas [1 ,2 ]
d'Orey, Pedro M. [3 ]
Aguiar, Ana [3 ]
机构
[1] Univ Simon Bolivar, Caracas, Venezuela
[2] Univ Porto, Porto, Portugal
[3] Univ Porto, Inst Telecomunicacoes, Porto, Portugal
来源
PROCEEDINGS OF THE 15TH ACM CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS (SENSYS'17) | 2017年
关键词
Crowdsensing; traffic estimation;
D O I
10.1145/3131672.3136958
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traffic congestion adversely impacts our lives. Traffic estimation resorting to mobile (crowdsensing) probes is a challenging task. We present key challenges for accurate and real-time traffic estimation resorting to crowdsensing data, namely data sparsity, user trip diversity, population bias, data quality, among others. We propose solutions to address some of these issues and demonstrate the relevance of others through an exploratory data analysis.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Traffic Condition Estimation Using Vehicular Crowdsensing Data
    Shao, Lu
    Wang, Cheng
    Li, Zhong
    Jiang, Changjun
    2015 IEEE 34TH INTERNATIONAL PERFORMANCE COMPUTING AND COMMUNICATIONS CONFERENCE (IPCCC), 2015,
  • [2] CrowdPatrol: A Mobile Crowdsensing Framework for Traffic Violation Hotspot Patrolling
    Jiang, Zhihan
    Zhu, Hang
    Zhou, Binbin
    Lu, Chenhui
    Sun, Mingfei
    Ma, Xiaojuan
    Fan, Xiaoliang
    Wang, Cheng
    Chen, Longbiao
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2023, 22 (03) : 1401 - 1416
  • [3] An Infrastructure-Assisted Crowdsensing Approach for On-Demand Traffic Condition Estimation
    Rahman, Sawsan Abdul
    Mourad, Azzam
    El Barachi, May
    IEEE ACCESS, 2019, 7 : 163323 - 163340
  • [4] RTS: road topology-based scheme for traffic condition estimation via vehicular crowdsensing
    Shao, Lu
    Wang, Cheng
    Liu, Lu
    Jiang, Changjun
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2017, 29 (03)
  • [5] Toward Efficient Mechanisms for Mobile Crowdsensing
    Zhang, Xinglin
    Yang, Zheng
    Liu, Yunhao
    Li, Jianqiang
    Ming, Zhong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2017, 66 (02) : 1760 - 1771
  • [6] A Reference Architecture for Mobile Crowdsensing Platforms
    Diniz, Herbertt B. M.
    Silva, Emanoel C. G. F.
    Nogueira, Thomas C. C.
    Gama, Kiev
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 2 (ICEIS), 2016, : 600 - 607
  • [7] Maximum Profit Routing for Mobile Crowdsensing
    Li, Zhiyao
    Zhang, Jiale
    Gao, Xiaofeng
    Chen, Guihai
    2022 21ST ACM/IEEE INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN 2022), 2022, : 441 - 450
  • [8] QoS Assessment of Mobile Crowdsensing Services
    Salvatore Distefano
    Francesco Longo
    Marco Scarpa
    Journal of Grid Computing, 2015, 13 : 629 - 650
  • [9] In-network Collaborative Mobile Crowdsensing
    Du, Yifan
    2020 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS (PERCOM WORKSHOPS), 2020,
  • [10] QoS Assessment of Mobile Crowdsensing Services
    Distefano, Salvatore
    Longo, Francesco
    Scarpa, Marco
    JOURNAL OF GRID COMPUTING, 2015, 13 (04) : 629 - 650