Integral transforms between tomogram and quasi-probability functions based on quantizer-dequantizer operators formalism

被引:7
作者
Man'ko, V. I. [1 ,2 ]
Markovich, L. A. [3 ,4 ,5 ]
机构
[1] Russian Acad Sci, PN Lebedev Phys Inst, Leninskii Prospect 53, Moscow 119991, Russia
[2] Moscow Inst Phys & Technol, Inst Per 9, Dolgoprudnyi 141700, Moscow Region, Russia
[3] VA Trapeznikov Inst Control Sci, Profsoyuznaya 65, Moscow 117997, Russia
[4] Russian Quantum Ctr, Skolkovo IC, Bolshoy Bulvar 30,Bldg 1, Moscow 121205, Russia
[5] Inst Informat Transmiss Problems, Bolshoy Karetny Per 19,Bldg 1, Moscow 127051, Russia
关键词
PHASE-SPACE FORMULATION; WIGNER FUNCTION; QUANTUM STATISTICS; DENSITY-MATRIX; STAR PRODUCTS; DISTRIBUTIONS; STATES; TIME; REPRESENTATION; DYNAMICS;
D O I
10.1063/5.0019203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An application of a quantizer-dequantizer method as a unifying description for representations of states in quantum mechanics is considered. Well-known quasi-distributions and tomograms are rewritten in terms of the dequantizer and quantizer operators. Using this description of the tomographic probability function and its symbol, we construct the invertible integral transforms between the tomogram and the quasi-probability distributions such as Wigner, Kirkwood-Rihaczek, Choi-Williams, P- and Q-functions, and others.
引用
收藏
页数:20
相关论文
共 55 条
[1]   STAR PRODUCT, DISCRETE WIGNER FUNCTIONS, AND SPIN-SYSTEM TOMOGRAMS [J].
Adam, P. ;
Andreev, V. A. ;
Isar, A. ;
Man'ko, V. I. ;
Man'ko, M. A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 186 (03) :346-364
[2]   Star-Product Formalism for the Probability and Mean-Value Representations of Qudits [J].
Adam, Peter ;
Andreev, Vladimir A. ;
Man'ko, Margarita A. ;
Man'ko, Vladimir I. ;
Mechler, Matyas .
JOURNAL OF RUSSIAN LASER RESEARCH, 2020, 41 (05) :470-483
[3]   A TRANSFORMATIONAL PROPERTY OF THE HUSIMI FUNCTION AND ITS RELATION TO THE WIGNER FUNCTION AND SYMPLECTIC TOMOGRAMS [J].
Andreev, V. A. ;
Davidovic, D. M. ;
Davidovic, L. D. ;
Davidovic, M. D. ;
Man'ko, V. I. ;
Man'ko, M. A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 166 (03) :356-368
[4]   Tomography of two-particle spin states [J].
Andreev, VA ;
Man'ko, VI .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1998, 87 (02) :239-245
[5]   Quasi-distributions for arbitrary non-commuting operators [J].
Ben-Benjamin, J. S. ;
Cohen, L. .
PHYSICS LETTERS A, 2020, 384 (18)
[6]   From von Neumann to Wigner and beyond [J].
Ben-Benjamin, J. S. ;
Cohen, L. ;
Scully, M. O. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 227 (15-16) :2171-2182
[7]   A TOMOGRAPHIC APPROACH TO WIGNER FUNCTION [J].
BERTRAND, J ;
BERTRAND, P .
FOUNDATIONS OF PHYSICS, 1987, 17 (04) :397-405
[8]   Direct measurement of the Kirkwood-Rihaczek distribution for the spatial properties of a coherent light beam [J].
Bollen, Viktor ;
Sua, Yong Meng ;
Lee, Kim Fook .
PHYSICAL REVIEW A, 2010, 81 (06)
[9]   Nonlocal quantum macroscopic superposition in a high-thermal low-purity state [J].
Brezinski, Mark E. ;
Liu, Bin .
PHYSICAL REVIEW A, 2008, 78 (06)
[10]   Parametrizations of density matrices [J].
Bruening, E. ;
Makela, H. ;
Messina, A. ;
Petruccione, F. .
JOURNAL OF MODERN OPTICS, 2012, 59 (01) :1-20