Numerical stability of nonequispaced fast Fourier transforms

被引:14
作者
Potts, Daniel [1 ]
Tasche, Manfred [2 ]
机构
[1] Tech Univ Chemnitz, Dept Math, D-09107 Chemnitz, Germany
[2] Univ Rostock, Inst Math, D-18051 Rostock, Germany
关键词
Fast Fourier transform; Nonequispaced data; Nonequispaced FFT; Numerical stability; Roundoff error; Approximation error; Sampling of trigonometric polynomials;
D O I
10.1016/j.cam.2007.12.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents some new results Oil numerical stability for multivariate fast Fourier transform of no nonequispaced data (NFFT). In contrast to last Fourier transform (of equispaced data), the NFFT is all approximate algorithm. In a worst case study, we show that both approximation error and roundoff error have I strong influence Oil the numerical stability of NFFT. Numerical tests confirm the theoretical estimates of numerical stability. (C) 2007 Elsevier B.V All rights reserved.
引用
收藏
页码:655 / 674
页数:20
相关论文
共 50 条
  • [31] Individual-based models solved using fast Fourier transforms
    Haefner, JW
    Dugaw, CJ
    ECOLOGICAL MODELLING, 2000, 125 (2-3) : 159 - 172
  • [32] Integration of Discrete Wavelet and Fast Fourier Transforms for Quadcopter Fault Diagnosis
    Jaber, A. A.
    Al-Haddad, L. A.
    EXPERIMENTAL TECHNIQUES, 2024, 48 (05) : 865 - 876
  • [33] Objective quantification of acetylcholine receptor aggregation using fast Fourier transforms
    Seng, Kok-Yong
    Figueroa-Masot, Xavier
    Folch, Albert
    Vicini, Paolo
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2007, 85 (03) : 220 - 228
  • [34] New Look on q2r-Point Fast Fourier Transforms
    Grigoryan, Artyom M.
    Agaian, Sos S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (22) : 5972 - 5980
  • [35] ANALYSIS OF CHAOTIC VIBRATIONS OF FLEXIBLE PLATES USING FAST FOURIER TRANSFORMS AND WAVELETS
    Awrejcewicz, J.
    Krysko, A. V.
    Kutepov, I. E.
    Zagniboroda, N. A.
    Zhigalov, M. V.
    Krysko, V. A.
    INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2013, 13 (07)
  • [36] Focal field computation of an arbitrarily polarized beam using fast Fourier transforms
    Boruah, B. R.
    Neil, M. A. A.
    OPTICS COMMUNICATIONS, 2009, 282 (24) : 4660 - 4667
  • [37] Fast Fourier transforms for the evaluation of convolution products: CPU versus GPU implementation
    Van de Wiele, B.
    Vansteenkiste, A.
    Van Waeyenberge, B.
    Dupre, L.
    De Zutter, D.
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2014, 27 (03) : 495 - 504
  • [38] Quantum multiresolution analysis via fast Fourier transforms on Heisenbrg finite group
    Rundblad, E
    Labunets, V
    Novak, P
    Multisensor, Multisource Information Fusion: Architectures, Algorithms and Applications 2005, 2005, 5813 : 301 - 311
  • [39] Efficient Convolutional Neural Networks Utilizing Fine-Grained Fast Fourier Transforms
    Zhang, Yulin
    Li, Feipeng
    Xu, Haoke
    Li, Xiaoming
    Jiang, Shan
    ELECTRONICS, 2024, 13 (18)
  • [40] APPLICATION OF FAST FOURIER AND WAVELET TRANSFORMS TOWARDS ACTUATOR LEAKAGE DIAGNOSIS: A COMPARATIVE STUDY
    Goharrizi, Amin Yazdanpanah
    Sepehri, Nariman
    INTERNATIONAL JOURNAL OF FLUID POWER, 2013, 14 (02) : 39 - 51