Accelerating the least-square Monte Carlo method with parallel computing

被引:4
|
作者
Chen, Ching-Wen [1 ]
Huang, Kuan-Lin [1 ]
Lyuu, Yuh-Dauh [2 ]
机构
[1] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Dept Finance, Taipei 10617, Taiwan
来源
JOURNAL OF SUPERCOMPUTING | 2015年 / 71卷 / 09期
关键词
Least-squares Monte Carlo; Parallel computing; Option pricing; PVM; OPTIONS;
D O I
10.1007/s11227-015-1451-7
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper accelerates the critically important least-squares Monte Carlo method (LSM) in financial derivatives pricing with parallel computing. We parallelize LSM with space decomposition, turning it into an embarrassingly parallel algorithm. The program is implemented with Parallel Virtual Machine and ALGLIB. Our method gives accurate option prices with excellent speedup. Although this paper focuses on the pricing of options, the methodology is applicable to much more complex financial derivatives.
引用
收藏
页码:3593 / 3608
页数:16
相关论文
共 50 条
  • [41] Real Option Valuation of FACTS Investments Based on the Least Square Monte Carlo Method
    Blanco, Gerardo
    Olsina, Fernando
    Garces, Francisco
    Rehtanz, Christian
    2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,
  • [42] Study of parallel computing of a Monte Carlo programs
    Wang, Y.
    Yang, P.L.
    Zhu, W.J.
    Xia, S.Q.
    Hedianzixue Yu Tance Jishu/Nuclear Electronics and Detection Technology, 2001, 21 (01):
  • [43] Real Option Valuation of FACTS Investments Based on the Least Square Monte Carlo Method
    Blanco, Gerardo
    Olsina, Fernando
    Garces, Francisco
    Rehtanz, Christian
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (03) : 1389 - 1398
  • [44] A free surface calculation by least-square finite element method
    Hovanotayan, S
    Shimazaki, Y
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON COMPUTING IN CIVIL AND BUILDING ENGINEERING, VOLS 1-4, 1997, : 1701 - 1706
  • [45] Bi-iterative least-square method for subspace tracking
    Ouyang, S
    Hua, YB
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (08) : 2984 - 2996
  • [46] PREDICTION AND REGULATION BY LINEAR LEAST-SQUARE METHOD - WHITTLE,P
    HANNAN, EJ
    AUSTRALIAN JOURNAL OF STATISTICS, 1963, 5 (03): : 156 - 158
  • [47] DIGITAL-FILTER DESIGN USING THE LEAST-SQUARE METHOD
    POLYAK, MN
    NEYELOVA, OL
    TATANOV, AO
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1989, 32 (05): : 33 - 38
  • [48] Least-square collocation and Lagrange multipliers forTaylor meshless method
    Yang, Jie
    Hu, Heng
    Potier-Ferry, Michel
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (01) : 84 - 113
  • [49] AN IMPLICIT LEAST-SQUARE METHOD FOR THE INVERSE PROBLEM OF ACOUSTIC RADIATION
    CHAO, YC
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1987, 81 (05): : 1288 - 1292
  • [50] Optimal ellipse fitting method based on least-square principle
    Yan, Bei
    Wang, Bin
    Li, Yuan
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2008, 34 (03): : 295 - 298