Coordinated variable impedance control for multi-segment cable-driven continuum manipulators

被引:28
作者
Su, Tingting [1 ,2 ]
Niu, Lianzhen [1 ]
He, Guangping [1 ]
Liang, Xu [1 ,2 ]
Zhao, Lei [1 ]
Zhao, Quanliang [1 ]
机构
[1] North China Univ Technol, Dept Mech & Elect Engn, Beijing 100144, Peoples R China
[2] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
基金
国家重点研发计划;
关键词
Variable impedance control; Coordinated control; Continuum manipulators; Dynamics; Cable-driven; CONSTANT CURVATURE; SHAPE TRACKING; ROBOTS; STIFFNESS; DESIGN;
D O I
10.1016/j.mechmachtheory.2020.103969
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Continuum manipulators typically work in a constrained environment and rely on body compliance to conform around and interact with obstacles. The force operation capability of the continuum manipulators presents significant challenges for practical applications. In order to realize stable operations at multi-position contacts under coupling position-force constraints and improve the operational flexibility of multi-segment cable-driven continuum manipulators, coordinated variable impedance control at multiple contacting points along the continuum manipulators is proposed in this paper. By the aids of an external load estimator and a variable impedance controller in configuration space, the multi-segment cable-driven continuum manipulators based on pseudo-rigid-body modeling method can achieve coordinated variable impedance control in operation space. The stability of the external load estimator and the controller is analyzed. Numerical simulations and experiments also demonstrate the feasibility of the proposed control scheme for the multi-segment cable-driven continuum manipulators. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:19
相关论文
共 36 条
[1]   Multiobjective Optimization for Stiffness and Position Control in a Soft Robot Arm Module [J].
Ansari, Y. ;
Manti, M. ;
Falotico, E. ;
Cianchetti, M. ;
Laschi, C. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (01) :108-115
[2]   Hybrid motion/force control of multi-backbone continuum robots [J].
Bajo, Andrea ;
Simaan, Nabil .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (04) :422-434
[3]   Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait [J].
Blaya, JA ;
Herr, H .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2004, 12 (01) :24-31
[4]   Continuum Robots for Medical Applications: A Survey [J].
Burgner-Kahrs, Jessica ;
Rucker, D. Caleb ;
Choset, Howie .
IEEE TRANSACTIONS ON ROBOTICS, 2015, 31 (06) :1261-1280
[5]   Dynamics and control of redundantly actuated parallel manipulators [J].
Cheng, H ;
Yiu, YK ;
Li, ZX .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2003, 8 (04) :483-491
[6]  
Chikhaoui M. T., 2018, INT C EXH NEW ACT DR, P154
[7]  
De Luca Alessandro., 2006, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), P1623
[8]   On an Improved State Parametrization for Soft Robots With Piecewise Constant Curvature and Its Use in Model Based Control [J].
Della Santina, Cosimo ;
Bicchi, Antonio ;
Rus, Daniela .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) :1001-1008
[9]   Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines [J].
Dong, X. ;
Axinte, D. ;
Palmer, D. ;
Cobos, S. ;
Raffles, M. ;
Rabani, A. ;
Kell, J. .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2017, 44 :218-229
[10]   Dynamic Modeling of Bellows-Actuated Continuum Robots Using the Euler-Lagrange Formalism [J].
Falkenhahn, Valentin ;
Mahl, Tobias ;
Hildebrandt, Alexander ;
Neumann, Ruediger ;
Sawodny, Oliver .
IEEE TRANSACTIONS ON ROBOTICS, 2015, 31 (06) :1483-1496