Improving the Arterial Input Function in Dynamic Contrast Enhanced MRI by Fitting the Signal in the Complex Plane

被引:11
|
作者
Simonis, Frank F. J. [1 ]
Sbrizzi, Alessandro [2 ]
Beld, Ellis [1 ]
Lagendijk, Jan J. W. [1 ]
van den Berg, Cornelis A. T. [1 ]
机构
[1] Univ Med Ctr Utrecht, Imaging Div, Dept Radiotherapy, Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Dept Radiol, Utrecht, Netherlands
关键词
DCE-MRI; arterial input function; complex signal; fitting; DCE-MRI; T-1; BLOOD; PHASE; QUANTIFICATION; RELAXATION; TISSUE; MODEL; TESLA;
D O I
10.1002/mrm.26023
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Dynamic contrast enhanced (DCE) imaging is a widely used technique in oncologic imaging. An essential prerequisite for obtaining quantitative values from DCE-MRI is the determination of the arterial input function (AIF). However, it is very challenging to accurately estimate the AIF using MR. A comprehensive model, which uses complex data instead of either magnitude or phase, was developed to improve AIF estimation. Theory and Methods: The model was first applied to simulated data. Subsequently, the accuracy of the estimated contrast agent concentration was validated in a phantom. Finally the method was applied to existing DCE scans of 13 prostate cancer patients. Results: The complex signal method combines the complementary strengths of the magnitude and phase method, increasing the precision and accuracy of concentration estimation in simulated and phantom data. The in vivo AIFs show a good agreement between arterial voxels (standard deviation in the peak and tail equal 0.4 mM and 0.12 mM, respectively). Furthermore, the dynamic behavior closely followed the AIF obtained with DCE-CT in the same patients (mean correlation coefficient: 0.92). Conclusion: By using the complex signal, the AIF estimation becomes more accurate and precise. This might enable patient specific AIFs, thereby improving the quantitative values obtained from DCE-MRI. (C) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1236 / 1245
页数:10
相关论文
共 50 条
  • [31] Pharmacokinetic modeling of dynamic contrast-enhanced MRI using a reference region and input function tail
    Ahmed, Zaki
    Levesque, Ives R.
    MAGNETIC RESONANCE IN MEDICINE, 2020, 83 (01) : 286 - 298
  • [32] Signal intensity form of the Tofts model for quantitative analysis of prostate dynamic contrast enhanced MRI data
    Fan, Xiaobing
    Chatterjee, Aritrick
    Medved, Milica
    Oto, Aytekin
    Karczmar, Gregory S.
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (02)
  • [33] Automatic selection of arterial input function on dynamic contrast-enhanced MR images
    Peruzzo, Denis
    Bertoldo, Alessandra
    Zanderigo, Francesca
    Cobelli, Claudio
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) : E148 - E157
  • [34] Automatic determination of the arterial input function in dynamic susceptibility contrast MRI: comparison of different reproducible clustering algorithms
    Yin, Jiandong
    Yang, Jiawen
    Guo, Qiyong
    NEURORADIOLOGY, 2015, 57 (05) : 535 - 543
  • [35] Dynamic Susceptibility Contrast MRI with Localized Arterial Input Functions
    Lee, John J.
    Bretthorst, G. Larry
    Derdeyn, Colin P.
    Powers, William J.
    Videen, Tom O.
    Snyder, Abraham Z.
    Markham, Joanne
    Shimony, Joshua S.
    MAGNETIC RESONANCE IN MEDICINE, 2010, 63 (05) : 1305 - 1314
  • [36] Use of Cardiac Output to Improve Measurement of Input Function in Quantitative Dynamic Contrast-Enhanced MRI
    Zhang, Jeff L.
    Rusinek, Henry
    Bokacheva, Louisa
    Chen, Qun
    Storey, Pippa
    Lee, Vivian S.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2009, 30 (03) : 656 - 665
  • [37] Effect of parallel radiofrequency transmission on arterial input function selection in dynamic contrast-enhanced 3 Tesla pelvic MRI
    Chafi, Hatim
    Elias, Saba N.
    Nguyen, Huyen T.
    Friel, Harry T.
    Knopp, Michael V.
    Guo, BeiBei
    Heymsfield, Steven B.
    Jia, Guang
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2016, 43 (01) : 229 - 235
  • [38] Influence of arterial input function (AIF) on quantitative prostate dynamic contrast-enhanced (DCE) MRI and zonal prostate anatomy
    Ziayee, F.
    Mueller-Lutz, A.
    Gross, J.
    Quentin, M.
    Ullrich, T.
    Heusch, P.
    Arsov, C.
    Rabenalt, R.
    Albers, P.
    Antoch, G.
    Wittsack, H. J.
    Schimmoeller, L.
    MAGNETIC RESONANCE IMAGING, 2018, 53 : 28 - 33
  • [39] Estimating the arterial input function from dynamic contrast-enhanced MRI data with compensation for flow enhancement (II): Applications in spine diagnostics and assessment of crohn's disease
    van Schie, Jeroen J. N.
    Lavini, Cristina
    van Vliet, Lucas J.
    Kramer, Gem
    Pieters-van den Bos, Indra
    Marcus, J. T.
    Stoker, Jaap
    Vos, Frans M.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 47 (05) : 1197 - 1204
  • [40] T2*-correction in dynamic contrast-enhanced MRI from double-echo acquisitions
    Kleppesto, Magne
    Larsson, Christopher
    Groote, Inge
    Salo, Raimo
    Vardal, Jonas
    Courivaud, Frederic
    Bjornerud, Alte
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2014, 39 (05) : 1314 - 1319