Improving the Arterial Input Function in Dynamic Contrast Enhanced MRI by Fitting the Signal in the Complex Plane

被引:11
|
作者
Simonis, Frank F. J. [1 ]
Sbrizzi, Alessandro [2 ]
Beld, Ellis [1 ]
Lagendijk, Jan J. W. [1 ]
van den Berg, Cornelis A. T. [1 ]
机构
[1] Univ Med Ctr Utrecht, Imaging Div, Dept Radiotherapy, Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Dept Radiol, Utrecht, Netherlands
关键词
DCE-MRI; arterial input function; complex signal; fitting; DCE-MRI; T-1; BLOOD; PHASE; QUANTIFICATION; RELAXATION; TISSUE; MODEL; TESLA;
D O I
10.1002/mrm.26023
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Dynamic contrast enhanced (DCE) imaging is a widely used technique in oncologic imaging. An essential prerequisite for obtaining quantitative values from DCE-MRI is the determination of the arterial input function (AIF). However, it is very challenging to accurately estimate the AIF using MR. A comprehensive model, which uses complex data instead of either magnitude or phase, was developed to improve AIF estimation. Theory and Methods: The model was first applied to simulated data. Subsequently, the accuracy of the estimated contrast agent concentration was validated in a phantom. Finally the method was applied to existing DCE scans of 13 prostate cancer patients. Results: The complex signal method combines the complementary strengths of the magnitude and phase method, increasing the precision and accuracy of concentration estimation in simulated and phantom data. The in vivo AIFs show a good agreement between arterial voxels (standard deviation in the peak and tail equal 0.4 mM and 0.12 mM, respectively). Furthermore, the dynamic behavior closely followed the AIF obtained with DCE-CT in the same patients (mean correlation coefficient: 0.92). Conclusion: By using the complex signal, the AIF estimation becomes more accurate and precise. This might enable patient specific AIFs, thereby improving the quantitative values obtained from DCE-MRI. (C) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1236 / 1245
页数:10
相关论文
共 50 条
  • [21] New Criterion to Aid Manual and Automatic Selection of the Arterial Input Function in Dynamic Susceptibility Contrast MRI
    Bleeker, Egbert J. W.
    van Osch, Matthias J. P.
    Connelly, Alan
    van Buchem, Mark A.
    Webb, Andrew G.
    Calamante, Fernando
    MAGNETIC RESONANCE IN MEDICINE, 2011, 65 (02) : 448 - 456
  • [22] Arterial input functions for dynamic susceptibility contrast MRI: Requirements and signal options
    Conturo, TE
    Akbudak, E
    Kotys, MS
    Chen, ML
    Chun, SJ
    Hsu, RM
    Sweeney, CC
    Markham, J
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2005, 22 (06) : 697 - 703
  • [23] Comparison of arterial input functions measured from ultra-fast dynamic contrast enhanced MRI and dynamic contrast enhanced computed tomography in prostate cancer patients
    Wang, Shiyang
    Lu, Zhengfeng
    Fan, Xiaobing
    Medved, Milica
    Jiang, Xia
    Sammet, Steffen
    Yousuf, Ambereen
    Pineda, Federico
    Oto, Aytekin
    Karczmar, Gregory S.
    PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (03)
  • [24] Effects of Inflow and Radiofrequency Spoiling on the Arterial Input Function in Dynamic Contrast-Enhanced MRI: A Combined Phantom and Simulation Study
    Garpebring, Anders
    Wirestam, Ronnie
    Ostlund, Nils
    Karlsson, Mikael
    MAGNETIC RESONANCE IN MEDICINE, 2011, 65 (06) : 1670 - 1679
  • [25] Estimating the arterial input function from dynamic contrast-enhanced MRI data with compensation for flow enhancement (I): Theory, method, and phantom experiments
    van Schie, Jeroen J. N.
    Lavini, Cristina
    van Vliet, Lucas J.
    Vos, Frans M.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 47 (05) : 1190 - 1196
  • [26] Quantitative dynamic contrast-enhanced MRI for mouse models using automatic detection of the arterial input function
    Kim, Jae-Hun
    Im, Geun Ho
    Yang, Jehoon
    Choi, Dongil
    Lee, Won Jae
    Lee, Jung Hee
    NMR IN BIOMEDICINE, 2012, 25 (04) : 674 - 684
  • [27] A model-constrained Monte Carlo method for blind arterial input function estimation in dynamic contrast-enhanced MRI: II. In vivo results
    Schabel, Matthias C.
    DiBella, Edward V. R.
    Jensen, Randy L.
    Salzman, Karen L.
    PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (16) : 4807 - 4823
  • [28] Correcting saturation effects of the arterial input function in dynamic susceptibility contrast-enhanced MRI -: a Monte Carlo simulation
    Brunecker, Peter
    Villringer, Arno
    Schultze, Joerg
    Nolte, Christian H.
    Jungehuelsing, Gerhard Jan
    Endres, Matthias
    Steinbrink, Jens
    MAGNETIC RESONANCE IMAGING, 2007, 25 (09) : 1300 - 1311
  • [29] Estimation of the capillary level input function for dynamic contrast-enhanced MRI of the breast using a deep learning approach
    Bae, Jonghyun
    Huang, Zhengnan
    Knoll, Florian
    Geras, Krzysztof
    Sood, Terlika Pandit
    Feng, Li
    Heacock, Laura
    Moy, Linda
    Kim, Sungheon Gene
    MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (05) : 2536 - 2550
  • [30] A simulation study comparing nine mathematical models of arterial input function for dynamic contrast enhanced MRI to the Parker model
    He, Dianning
    Xu, Lisheng
    Qian, Wei
    Clarke, James
    Fan, Xiaobing
    AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, 2018, 41 (02) : 507 - 518