DEEP ACTIVE LEARNING FOR IMAGE CLASSIFICATION

被引:0
|
作者
Ranganathan, Hiranmayi [1 ]
Venkateswara, Hemanth [1 ]
Chakraborty, Shayok [1 ]
Panchanathan, Sethuraman [1 ]
机构
[1] Arizona State Univ, Ctr Cognit Ubiquitous Comp CUbiC, Tempe, AZ 85287 USA
来源
2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2017年
关键词
Computer vision; deep learning; deep belief networks; active learning; entropy;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
In the recent years, deep learning algorithms have achieved state-of-the-art performance in a variety of computer vision applications. In this paper, we propose a novel active learning framework to select the most informative unlabeled samples to train a deep belief network model. We introduce a loss function specific to the active learning task and train the model to minimize the loss function. To the best of our knowledge, this is the first research effort to integrate an active learning based criterion in the loss function used to train a deep belief network. Our extensive empirical studies on a wide variety of uni-modal and multi-modal vision datasets corroborate the potential of the method for real-world image recognition applications.
引用
收藏
页码:3934 / 3938
页数:5
相关论文
共 50 条
  • [31] Deep learning for biological image classification
    Affonso, Carlos
    Debiaso Rossi, Andre Luis
    Antunes Vieira, Fabio Henrique
    de Leon Ferreira de Carvalho, Andre Carlos Ponce
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 85 : 114 - 122
  • [32] Deep Learning for Satellite Image Classification
    Shafaey, Mayar A.
    Salem, Mohammed A. -M.
    Ebied, H. M.
    Al-Berry, M. N.
    Tolba, M. F.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2018, 2019, 845 : 383 - 391
  • [33] Deep Learning for SAR Image Classification
    Anas, Hasni
    Majdoulayne, Hanifi
    Chaimae, Anibou
    Nabil, Saidi Mohamed
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, 2020, 1037 : 890 - 898
  • [34] Deep learning in tiny image classification
    Lv, Gang
    2012 INTERNATIONAL CONFERENCE ON INTELLIGENCE SCIENCE AND INFORMATION ENGINEERING, 2012, 20 : 5 - 8
  • [35] Shallow and deep learning for image classification
    Ososkov G.
    Goncharov P.
    Optical Memory and Neural Networks, 2017, 26 (4) : 221 - 248
  • [36] Recent Advancements and Future Prospects in Active Deep Learning for Medical Image Segmentation and Classification
    Mahmood, Tariq
    Rehman, Amjad
    Saba, Tanzila
    Nadeem, Lubna
    Bahaj, Saeed Ali Omer
    IEEE ACCESS, 2023, 11 : 113623 - 113652
  • [37] Information Gain Sampling for Active Learning in Medical Image Classification
    Mehta, Raghav
    Shui, Changjian
    Nichyporuk, Brennan
    Arbel, Tal
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, 2022, 13563 : 135 - 145
  • [38] DEEP ACTIVE LEARNING BASED ON SALIENCY-GUIDED DATA AUGMENTATION FOR IMAGE CLASSIFICATION
    Liu, Ying
    Pang, Yuliang
    Zhang, Weidong
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 815 - 819
  • [39] Comparing Deep Learning Models for Image Classification in Urban Flooding
    Goncalves, Andre
    Resende, Luis
    Conci, Aura
    2024 31ST INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, IWSSIP 2024, 2024,
  • [40] Deep learning-based image classification of gas coal
    Zhang, Zelin
    Zhang, Zhiwei
    Liu, Yang
    Wang, Lei
    Xia, Xuhui
    INTERNATIONAL JOURNAL OF GLOBAL ENERGY ISSUES, 2021, 43 (04) : 371 - 386