Photocurrent measurements of supercollision cooling in graphene

被引:269
作者
Graham, Matt W. [1 ,2 ]
Shi, Su-Fei [1 ,2 ]
Ralph, Daniel C. [1 ,2 ]
Park, Jiwoong [2 ,3 ]
McEuen, Paul L. [1 ,2 ]
机构
[1] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
[2] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA
[3] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
关键词
PHOTORESPONSE;
D O I
10.1038/nphys2493
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The cooling of hot electrons in graphene is the critical process underlying the operation of exciting new graphene-based optoelectronic and plasmonic devices, but the nature of this cooling is controversial. We extract the hot-electron cooling rate near the Fermi level by using graphene as a novel photothermal thermometer that measures the electron temperature (T(t)) as it cools dynamically. We find the photocurrent generated from graphene p-n junctions is well described by the energy dissipation rate CdT/dt = A(T-3 - T-1(3))(r) where the heat capacity is C = alpha T and T-1 is the base lattice temperature. These results are in disagreement with predictions of electron-phonon emission in a disorder-free graphene system, but in excellent quantitative agreement with recent predictions of a disorder-enhanced supercollision cooling mechanism. We find that the supercollision model provides a complete and unified picture of energy loss near the Fermi level over the wide range of electronic (15 to similar to 3,000 K) and lattice (10-295 K) temperatures investigated.
引用
收藏
页码:103 / 108
页数:6
相关论文
共 23 条
  • [1] Electronic Cooling in Graphene
    Bistritzer, R.
    MacDonald, A. H.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (20)
  • [2] Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
  • [3] Ultrafast Carrier Dynamics in Graphite
    Breusing, Markus
    Ropers, Claus
    Elsaesser, Thomas
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (08)
  • [4] Fong K. C., 2012, PHYS REV X, V3
  • [5] Hot Carrier-Assisted Intrinsic Photoresponse in Graphene
    Gabor, Nathaniel M.
    Song, Justin C. W.
    Ma, Qiong
    Nair, Nityan L.
    Taychatanapat, Thiti
    Watanabe, Kenji
    Taniguchi, Takashi
    Levitov, Leonid S.
    Jarillo-Herrero, Pablo
    [J]. SCIENCE, 2011, 334 (6056) : 648 - 652
  • [6] Interaction of massless Dirac electrons with acoustic phonons in graphene at low temperatures
    Kubakaddi, S. S.
    [J]. PHYSICAL REVIEW B, 2009, 79 (07):
  • [7] Gate-Activated Photoresponse in a Graphene p-n Junction
    Lemme, Max C.
    Koppens, Frank H. L.
    Falk, Abram L.
    Rudner, Mark S.
    Park, Hongkun
    Levitov, Leonid S.
    Marcus, Charles M.
    [J]. NANO LETTERS, 2011, 11 (10) : 4134 - 4137
  • [8] Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils
    Li, Xuesong
    Cai, Weiwei
    An, Jinho
    Kim, Seyoung
    Nah, Junghyo
    Yang, Dongxing
    Piner, Richard
    Velamakanni, Aruna
    Jung, Inhwa
    Tutuc, Emanuel
    Banerjee, Sanjay K.
    Colombo, Luigi
    Ruoff, Rodney S.
    [J]. SCIENCE, 2009, 324 (5932) : 1312 - 1314
  • [9] Microscopic theory of absorption and ultrafast many-particle kinetics in graphene
    Malic, Ermin
    Winzer, Torben
    Bobkin, Evgeny
    Knorr, Andreas
    [J]. PHYSICAL REVIEW B, 2011, 84 (20):
  • [10] Current saturation in zero-bandgap, topgated graphene field-effect transistors
    Meric, Inanc
    Han, Melinda Y.
    Young, Andrea F.
    Ozyilmaz, Barbaros
    Kim, Philip
    Shepard, Kenneth L.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (11) : 654 - 659