Photocurrent measurements of supercollision cooling in graphene

被引:274
作者
Graham, Matt W. [1 ,2 ]
Shi, Su-Fei [1 ,2 ]
Ralph, Daniel C. [1 ,2 ]
Park, Jiwoong [2 ,3 ]
McEuen, Paul L. [1 ,2 ]
机构
[1] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
[2] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA
[3] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
关键词
PHOTORESPONSE;
D O I
10.1038/nphys2493
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The cooling of hot electrons in graphene is the critical process underlying the operation of exciting new graphene-based optoelectronic and plasmonic devices, but the nature of this cooling is controversial. We extract the hot-electron cooling rate near the Fermi level by using graphene as a novel photothermal thermometer that measures the electron temperature (T(t)) as it cools dynamically. We find the photocurrent generated from graphene p-n junctions is well described by the energy dissipation rate CdT/dt = A(T-3 - T-1(3))(r) where the heat capacity is C = alpha T and T-1 is the base lattice temperature. These results are in disagreement with predictions of electron-phonon emission in a disorder-free graphene system, but in excellent quantitative agreement with recent predictions of a disorder-enhanced supercollision cooling mechanism. We find that the supercollision model provides a complete and unified picture of energy loss near the Fermi level over the wide range of electronic (15 to similar to 3,000 K) and lattice (10-295 K) temperatures investigated.
引用
收藏
页码:103 / 108
页数:6
相关论文
共 23 条
[1]   Electronic Cooling in Graphene [J].
Bistritzer, R. ;
MacDonald, A. H. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[2]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[3]   Ultrafast Carrier Dynamics in Graphite [J].
Breusing, Markus ;
Ropers, Claus ;
Elsaesser, Thomas .
PHYSICAL REVIEW LETTERS, 2009, 102 (08)
[4]  
Fong K. C., 2012, PHYS REV X, V3
[5]   Hot Carrier-Assisted Intrinsic Photoresponse in Graphene [J].
Gabor, Nathaniel M. ;
Song, Justin C. W. ;
Ma, Qiong ;
Nair, Nityan L. ;
Taychatanapat, Thiti ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Levitov, Leonid S. ;
Jarillo-Herrero, Pablo .
SCIENCE, 2011, 334 (6056) :648-652
[6]   Interaction of massless Dirac electrons with acoustic phonons in graphene at low temperatures [J].
Kubakaddi, S. S. .
PHYSICAL REVIEW B, 2009, 79 (07)
[7]   Gate-Activated Photoresponse in a Graphene p-n Junction [J].
Lemme, Max C. ;
Koppens, Frank H. L. ;
Falk, Abram L. ;
Rudner, Mark S. ;
Park, Hongkun ;
Levitov, Leonid S. ;
Marcus, Charles M. .
NANO LETTERS, 2011, 11 (10) :4134-4137
[8]   Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils [J].
Li, Xuesong ;
Cai, Weiwei ;
An, Jinho ;
Kim, Seyoung ;
Nah, Junghyo ;
Yang, Dongxing ;
Piner, Richard ;
Velamakanni, Aruna ;
Jung, Inhwa ;
Tutuc, Emanuel ;
Banerjee, Sanjay K. ;
Colombo, Luigi ;
Ruoff, Rodney S. .
SCIENCE, 2009, 324 (5932) :1312-1314
[9]   Microscopic theory of absorption and ultrafast many-particle kinetics in graphene [J].
Malic, Ermin ;
Winzer, Torben ;
Bobkin, Evgeny ;
Knorr, Andreas .
PHYSICAL REVIEW B, 2011, 84 (20)
[10]   Current saturation in zero-bandgap, topgated graphene field-effect transistors [J].
Meric, Inanc ;
Han, Melinda Y. ;
Young, Andrea F. ;
Ozyilmaz, Barbaros ;
Kim, Philip ;
Shepard, Kenneth L. .
NATURE NANOTECHNOLOGY, 2008, 3 (11) :654-659