SINGULAR INTEGRAL OPERATORS WITH ROUGH KERNELS ON CENTRAL MORREY SPACES WITH VARIABLE EXPONENT

被引:25
作者
Fu, Zunwei [1 ,2 ]
Lu, Shanzhen [3 ]
Wang, Hongbin [4 ,5 ]
Wang, Liguang [2 ]
机构
[1] Univ Suwon, Dept Comp Sci, Hwaseong Si 445743, Gyeonggi Do, South Korea
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273100, Shandong, Peoples R China
[3] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[4] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Shandong, Peoples R China
[5] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
lambda-central BMO spaces; central Morrey space; variable exponent; commutator; singular integral operator; WEIGHTED NORM INEQUALITIES; HARDY-SPACES; BOUNDEDNESS; COMMUTATORS; EQUATIONS;
D O I
10.5186/aasfm.2019.4431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we define the lambda-central BMO spaces and the central Morrey spaces with variable exponent. We obtain the boundedness of the singular integral operator T-Omega,T-alpha and its commutator [b, T-Omega,T-alpha] on central Morrey spaces with variable exponent, where Omega is an element of L-s (Sn-1) for s >= 1 be homogeneous function of degree zero, 0 <= alpha < n and b be lambda-central BMO functions. As applications, we consider the regularity in the central Morrey spaces with variable exponent of strong solutions to nondivergence elliptic equations with VMO coefficients.
引用
收藏
页码:505 / 522
页数:18
相关论文
共 31 条
[1]  
Alvarez J., 2000, Collectanea Mathematica, V51, P1
[2]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[3]   W2,P-SOLVABILITY OF THE DIRICHLET PROBLEM FOR NONDIVERGENCE ELLIPTIC-EQUATIONS WITH VMO COEFFICIENTS [J].
CHIARENZA, F ;
FRASCA, M ;
LONGO, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 336 (02) :841-853
[4]  
Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239
[5]  
Cruz-Uribe D, 2003, ANN ACAD SCI FENN-M, V28, P223
[6]  
CruzUribe DV, 2013, APPL NUMER HARMON AN, DOI 10.1007/978-3-0348-0548-3
[7]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[8]   WEIGHTED NORM INEQUALITIES FOR HOMOGENEOUS SINGULAR-INTEGRALS [J].
DUOANDIKOETXEA, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 336 (02) :869-880
[9]  
Fan D., 1998, Georgian Math. J., V5, P425
[10]   λ-central BMO estimates for commutators of singular integral operators with rough kernels [J].
Fu, Zun Wei ;
Lin, Yan ;
Lu, Shan Zhen .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (03) :373-386