MTGO: PPI Network Analysis Via Topological and Functional Module Identification

被引:108
作者
Vella, Danila [1 ,2 ]
Marini, Simone [3 ]
Vitali, Francesca [4 ,6 ,7 ,8 ]
Di Silvestre, Dario [9 ]
Mauri, Giancarlo [2 ]
Bellazzi, Riccardo [1 ,4 ,5 ]
机构
[1] Ist Clin Sci Maugeri, Pavia, Italy
[2] Univ Milano Bicocca, Dept Informat Syst & Commun, Milan, Italy
[3] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[4] Univ Pavia, Dept Elect Comp & Biomed Engn, Pavia, Italy
[5] Univ Pavia, Ctr Hlth Technol, Pavia, Italy
[6] Univ Arizona Hlth Sci, Ctr Biomed Informat & Biostat, Tucson, AZ USA
[7] Univ Arizona Hlth Sci, Inst Ctr Biomed Informat & Biostat BIO5, Tucson, AZ USA
[8] Univ Arizona Hlth Sci, Dept Med, Tucson, AZ USA
[9] CNR, Inst Biomed Technol, Segrate, Italy
关键词
PROTEIN-INTERACTION NETWORKS; GENE ONTOLOGY; COMPLEX PREDICTION; ANNOTATION; LANDSCAPE; MEDICINE; CELLS; TOOL;
D O I
10.1038/s41598-018-23672-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein-protein interaction (PPI) networks are viable tools to understand cell functions, disease machinery, and drug design/repositioning. Interpreting a PPI, however, it is a particularly challenging task because of network complexity. Several algorithms have been proposed for an automatic PPI interpretation, at first by solely considering the network topology, and later by integrating Gene Ontology (GO) terms as node similarity attributes. Here we present MTGO - Module detection via Topological information and GO knowledge, a novel functional module identification approach. MTGO let emerge the bimolecular machinery underpinning PPI networks by leveraging on both biological knowledge and topological properties. In particular, it directly exploits GO terms during the module assembling process, and labels each module with its best fit GO term, easing its functional interpretation. MTGO shows largely better results than other state of the art algorithms (including recent GO-based ones) when searching for small or sparse functional modules, while providing comparable or better results all other cases. MTGO correctly identifies molecular complexes and literature-consistent processes in an experimentally derived PPI network of Myocardial infarction. A software version of MTGO is available freely for non-commercial purposes at https://gitlab.com/d1vella/MTGO.
引用
收藏
页数:13
相关论文
共 49 条
[21]   A density-based clustering approach for identifying overlapping protein complexes with functional preferences [J].
Hu, Lun ;
Chan, Keith C. C. .
BMC BIOINFORMATICS, 2015, 16
[22]   Survey: Functional Module Detection from Protein-Protein Interaction Networks [J].
Ji, Junzhong ;
Zhang, Aidong ;
Liu, Chunnian ;
Quan, Xiaomei ;
Liu, Zhijun .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (02) :261-277
[23]   WCOACH: Protein complex prediction in weighted PPI networks [J].
Kouhsar, Morteza ;
Zare-Mirakabad, Fatemeh ;
Jamali, Yousef .
GENES & GENETIC SYSTEMS, 2015, 90 (05) :317-324
[24]   Global landscape of protein complexes in the yeast Saccharomyces cerevisiae [J].
Krogan, NJ ;
Cagney, G ;
Yu, HY ;
Zhong, GQ ;
Guo, XH ;
Ignatchenko, A ;
Li, J ;
Pu, SY ;
Datta, N ;
Tikuisis, AP ;
Punna, T ;
Peregrín-Alvarez, JM ;
Shales, M ;
Zhang, X ;
Davey, M ;
Robinson, MD ;
Paccanaro, A ;
Bray, JE ;
Sheung, A ;
Beattie, B ;
Richards, DP ;
Canadien, V ;
Lalev, A ;
Mena, F ;
Wong, P ;
Starostine, A ;
Canete, MM ;
Vlasblom, J ;
Wu, S ;
Orsi, C ;
Collins, SR ;
Chandran, S ;
Haw, R ;
Rilstone, JJ ;
Gandi, K ;
Thompson, NJ ;
Musso, G ;
St Onge, P ;
Ghanny, S ;
Lam, MHY ;
Butland, G ;
Altaf-Ui, AM ;
Kanaya, S ;
Shilatifard, A ;
O'Shea, E ;
Weissman, JS ;
Ingles, CJ ;
Hughes, TR ;
Parkinson, J ;
Gerstein, M .
NATURE, 2006, 440 (7084) :637-643
[25]   How Perfect Can Protein Interactomes Be? [J].
Levy, Emmanuel D. ;
Landry, Christian R. ;
Michnick, Stephen W. .
SCIENCE SIGNALING, 2009, 2 (60)
[26]   Computational approaches for detecting protein complexes from protein interaction networks: a survey [J].
Li, Xiaoli ;
Wu, Min ;
Kwoh, Chee-Keong ;
Ng, See-Kiong .
BMC GENOMICS, 2010, 11
[27]   Using contrast patterns between true complexes and random subgraphs in PPI networks to predict unknown protein complexes [J].
Liu, Quanzhong ;
Song, Jiangning ;
Li, Jinyan .
SCIENTIFIC REPORTS, 2016, 6
[28]   Combining functional and topological properties to identify core modules in Protein Interaction Networks [J].
Lubovac, Zelmina ;
Gamalielsson, Jonas ;
Olsson, Bjorn .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 64 (04) :948-959
[29]   Network integration and graph analysis in mammalian molecular systems biology [J].
Ma'ayan, A. .
IET SYSTEMS BIOLOGY, 2008, 2 (05) :206-221
[30]   BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks [J].
Maere, S ;
Heymans, K ;
Kuiper, M .
BIOINFORMATICS, 2005, 21 (16) :3448-3449