Development and Assessment of a Novel Whole-Gene-Based Targeted Next-Generation Sequencing Assay for Detecting the Susceptibility of Mycobacterium tuberculosis to 14 Drugs

被引:23
|
作者
Wu, Sheng-Han [1 ,2 ]
Xiao, Yu-Xin [1 ,2 ]
Hsiao, Hseuh-Chien [1 ,2 ]
Jou, Ruwen [1 ,2 ]
机构
[1] Minist Hlth & Welf, Ctr Dis Control, TB Res Ctr, Taipei, Taiwan
[2] Minist Hlth & Welf, Reference Lab Mycobacteriol, Ctr Dis Control, Taipei, Taiwan
来源
MICROBIOLOGY SPECTRUM | 2022年 / 10卷 / 06期
关键词
Mycobacterium tuberculosis; whole-genome sequencing; targeted NGS; drug susceptibility; heteroresistance; tuberculosis; CROSS-RESISTANCE; LEVEL RESISTANCE; MUTATIONS; RIFABUTIN; RIFAMPIN; CLOFAZIMINE; MTB/RIF; HETERORESISTANCE; BEDAQUILINE; PERFORMANCE;
D O I
10.1128/spectrum.02605-22
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Targeted next-generation sequencing (tNGS) has emerged as an alternative method for detecting drug-resistant tuberculosis (DR-TB). To provide comprehensive drug susceptibility information and to address mutations missed by available commercial molecular diagnostics, we developed and evaluated a tNGS panel with 22 whole-gene targets using the Ion Torrent platform to predict drug resistance to 14 drugs, namely, rifampicin (RIF), isoniazid (INH), ethambutol (EMB), pyrazinamide (PZA), moxifloxacin (MFX), levofloxacin (LFX), amikacin (AMK), capreomycin (CM), kanamycin (KM), streptomycin (SM), bedaquiline (BDQ), clofazimine (CFZ), linezolid (LZD), and delamanid (DLM). We selected 50 and 35 Mycobacterium tuberculosis isolates with various DR profiles as the training set and the challenge set, respectively. Comparative variant analyses of the DR genes were performed using Sanger sequencing and whole-genome sequencing (WGS). Phenotypic drug susceptibility testing (pDST) results were used as gold standards. Regarding the limit of detection, the tNGS assay detected 2.9 to 3.8% minority variants in 4% mutant mixtures. The sensitivity and specificity of tNGS were 97.0% (95% confidence interval [CI] = 93.1 to 98.7%) and 99.1% (95% CI = 97.7 to 99.7%), respectively. The concordance of tNGS with pDST was 98.5% (95% CI = 97.2 to 99.2%), which was comparable to that of WGS (98.7%, 95% CI = 97.4 to 99.3%) and better than that of Sanger sequencing (96.9%, 95% CI = 95.3 to 98.0%). The agreement between tNGS and pDST was almost perfect for RIF, INH, EMB, MFX, LFX, AMK, CM, KM, SM, BDQ, and LZD (kappa value = 0.807 to 1.000) and substantial for PZA (kappa value = 0.791). Our customized novel whole-gene-based tNGS panel is highly consistent with pDST and WGS for comprehensive and accurate prediction of drug resistance in a strengthened and streamlined DR-TB laboratory program. IMPORTANCE We developed and validated a tNGS assay that was the first to target 22 whole genes instead of regions of drug resistance genes and comprehensively detected susceptibility to 14 anti-TB drugs, with great flexibility to include new or repurposed drugs. Notably, we demonstrated that our custom-designed Ion AmpliSeq TB research panel platform had high concordance with pDST and could significantly reduce turnaround time (by approximately 70%) to meet a clinically actionable time frame. Our tNGS assay is a promising DST solution for providing needed clinical information for precision medicine-guided therapies for DR-TB and allows the rollout of active pharmacovigilance.
引用
收藏
页数:14
相关论文
共 32 条
  • [31] Novel mutation of type-1 insulin-like growth factor receptor (IGF-1R) gene in a severe short stature pedigree identified by targeted next-generation sequencing
    Yang, Yu
    Huang, Hui
    Chen, Ka
    Yang, Li
    Xie, Li-ling
    Xiong, Ting
    Wu, Xian
    JOURNAL OF GENETICS, 2019, 98 (01)
  • [32] Assessment of the GenoType MTBDRsl VER 2.0 compared to the phenotypic drug susceptibility testing and whole genome sequencing for the rapid detection of resistance to fluoroquinolone and second-line injectable drugs among rifampicin-resistant Mycobacterium tuberculosis isolates
    Jalil Kardan-Yamchi
    Sirus Amini
    Gholamreza Hamzelou
    Abbas Rahimi Foroushani
    Arash Ghodousi
    Daniela Maria Cirillo
    Mohammad Mehdi Feizabadi
    Archives of Microbiology, 2021, 203 : 3989 - 3996