An elitist multi-objective particle swarm optimization algorithm for composite structures design

被引:6
|
作者
Fitas, Ricardo [1 ]
Carneiro, Goncalo das Neves [1 ]
Antonio, Carlos Conceicao [1 ]
机构
[1] Univ Porto, Fac Engn, INEGI LAETA, Porto, Portugal
关键词
Particle swarm optimization; Fitness assignment; Optimization; Robustness; Composite structures; RELIABILITY-BASED DESIGN; GENETIC ALGORITHM; MINIMUM-WEIGHT; CONVERGENCE; PLATES;
D O I
10.1016/j.compstruct.2022.116158
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Optimization is an important area of research in Engineering, usually due to the potentiality of saving costs and improving structural safety. Composite structures are typically complex, and the Finite Element Method is frequently required to evaluate such structures. From another perspective, Robust Design Optimization (RDO) is an approach that aims to consider the variability of the composite structures response due to uncertainty in design variables or material properties. Under these conditions, the problem of maximizing the robustness is added to the optimality problem related to minimizing the structure's weight. This work combines the advantages of Particle Swarm Optimization (PSO), such as simplicity and greater exploration and exploitation capabilities, with fitness assignment methodologies and elitist strategies commonly applied to Genetic Algorithms. The purpose is to achieve a more perceptible Pareto front and faster. The development is applied to the RDO bi-objective optimization problem in composite structures. Results for optimal design variables, critical displacements and stresses are discussed. The results show that elitist-based PSO approaches lead to a Pareto front with a larger number of optimal solutions, with more robust and lighter solutions when compared to other methodologies.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Multi-objective Particle Swarm Optimization Algorithm Based on the Disturbance Operation
    Gao, Yuelin
    Qu, Min
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT I, 2011, 7002 : 591 - 600
  • [32] Multi-Objective Particle Swarm Optimization Algorithm Based on Differential Populations
    Qiao, Ying
    INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, ICIC 2012, 2012, 7390 : 510 - 517
  • [33] Automatic kernel clustering with a Multi-Elitist Particle Swarm Optimization Algorithm
    Das, Swagatam
    Abraham, Ajith
    Konar, Amit
    PATTERN RECOGNITION LETTERS, 2008, 29 (05) : 688 - 699
  • [34] An Improved Multi-Objective Particle Swarm Optimization
    Yang, Xixiang
    Zhang, Weihua
    ADVANCED SCIENCE LETTERS, 2011, 4 (4-5) : 1491 - 1495
  • [35] An integrated cultural particle swarm algorithm for multi-objective reliability-based design optimization
    Li, Zhongkai
    Tian, Guangdong
    Cheng, Gang
    Liu, Houguang
    Cheng, Zhihong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2014, 228 (07) : 1185 - 1196
  • [36] An Improving Multi-Objective Particle Swarm Optimization
    Fan, JiShan
    WEB INFORMATION SYSTEMS AND MINING, 2010, 6318 : 1 - 6
  • [37] A MULTI-OBJECTIVE MEMETIC ALGORITHM FOR SUSTAINABLE DESIGN OF FRP COMPOSITE STRUCTURES
    Antonio, Carlos C.
    IRF2016: 5TH INTERNATIONAL CONFERENCE INTEGRITY-RELIABILITY-FAILURE, 2016, : 1235 - 1244
  • [38] A Particle Swarm Optimizer for Multi-Objective Optimization
    Cagnina, Leticia
    Esquivel, Susana
    Coello Coello, Carlos A.
    JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2005, 5 (04): : 204 - 210
  • [39] A new multi-objective particle swarm optimization algorithm based on decomposition
    Dai, Cai
    Wang, Yuping
    Ye, Miao
    INFORMATION SCIENCES, 2015, 325 : 541 - 557
  • [40] A novel multi-objective quantum particle swarm algorithm for suspension optimization
    Grotti, Ewerton
    Mizushima, Douglas Makoto
    Backes, Artur Dieguez
    Awruch, Marcos Daniel de Freitas
    Gomes, Herbert Martins
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02)