An elitist multi-objective particle swarm optimization algorithm for composite structures design

被引:6
|
作者
Fitas, Ricardo [1 ]
Carneiro, Goncalo das Neves [1 ]
Antonio, Carlos Conceicao [1 ]
机构
[1] Univ Porto, Fac Engn, INEGI LAETA, Porto, Portugal
关键词
Particle swarm optimization; Fitness assignment; Optimization; Robustness; Composite structures; RELIABILITY-BASED DESIGN; GENETIC ALGORITHM; MINIMUM-WEIGHT; CONVERGENCE; PLATES;
D O I
10.1016/j.compstruct.2022.116158
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Optimization is an important area of research in Engineering, usually due to the potentiality of saving costs and improving structural safety. Composite structures are typically complex, and the Finite Element Method is frequently required to evaluate such structures. From another perspective, Robust Design Optimization (RDO) is an approach that aims to consider the variability of the composite structures response due to uncertainty in design variables or material properties. Under these conditions, the problem of maximizing the robustness is added to the optimality problem related to minimizing the structure's weight. This work combines the advantages of Particle Swarm Optimization (PSO), such as simplicity and greater exploration and exploitation capabilities, with fitness assignment methodologies and elitist strategies commonly applied to Genetic Algorithms. The purpose is to achieve a more perceptible Pareto front and faster. The development is applied to the RDO bi-objective optimization problem in composite structures. Results for optimal design variables, critical displacements and stresses are discussed. The results show that elitist-based PSO approaches lead to a Pareto front with a larger number of optimal solutions, with more robust and lighter solutions when compared to other methodologies.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A Fast and Elitist Multi-objective Particle Swarm Algorithm: NSPSO
    Liu, Yang
    2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 470 - 475
  • [2] Quantum behaved Particle Swarm Optimization (QPSO) for multi-objective design optimization of composite structures
    Omkar, S. N.
    Khandelwal, Rahul
    Ananth, T. V. S.
    Naik, G. Narayana
    Gopalakrishnan, S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (08) : 11312 - 11322
  • [3] Vector evaluated particle swarm optimization (VEPSO) for multi-objective design optimization of composite structures
    Omkar, S. N.
    Mudigere, Dheevatsa
    Naik, G. Narayana
    Gopalakrishnan, S.
    COMPUTERS & STRUCTURES, 2008, 86 (1-2) : 1 - 14
  • [4] Optimization Design of Blades Based on Multi-Objective Particle Swarm Optimization Algorithm
    Li, Zihao
    Wang, Wei
    Xie, Yonghe
    Li, Detang
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2025, 13 (03)
  • [5] Modified Multi-Objective Particle Swarm Optimization Algorithm for Multi-objective Optimization Problems
    Qiao, Ying
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 520 - 527
  • [6] A modified particle swarm approach for multi-objective optimization of laminated composite structures
    Sepehri, A.
    Daneshmand, F.
    Jafarpur, K.
    STRUCTURAL ENGINEERING AND MECHANICS, 2012, 42 (03) : 335 - 352
  • [7] An improved multi-objective particle swarm optimization algorithm
    Zhang, Qiuming
    Xue, Siqing
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2007, 4683 : 372 - +
  • [8] Improved multi-objective particle swarm optimization algorithm
    College of Automation, Northwestern Polytechnical University, Xi'an 710129, China
    不详
    Liu, B. (lbn1987113@163.com), 2013, Beijing University of Aeronautics and Astronautics (BUAA) (39):
  • [9] A simplified multi-objective particle swarm optimization algorithm
    Vibhu Trivedi
    Pushkar Varshney
    Manojkumar Ramteke
    Swarm Intelligence, 2020, 14 : 83 - 116
  • [10] Constrained Multi-objective Particle Swarm Optimization Algorithm
    Gao, Yue-lin
    Qu, Min
    EMERGING INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, 2012, 304 : 47 - 55