Thermal conductivity of silicon nanowire arrays with controlled roughness

被引:114
|
作者
Feser, Joseph P. [1 ,2 ]
Sadhu, Jyothi S. [3 ]
Azeredo, Bruno P. [3 ]
Hsu, Keng H. [3 ]
Ma, Jun [3 ]
Kim, Junhwan [3 ]
Seong, Myunghoon [3 ]
Fang, Nicholas X. [4 ]
Li, Xiuling [5 ]
Ferreira, Placid M. [3 ]
Sinha, Sanjiv [3 ]
Cahill, David G. [1 ,2 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Mech Engn, Urbana, IL 61801 USA
[4] MIT, Dept Mech Engn, Boston, MA 02139 USA
[5] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
THERMOELECTRIC-MATERIAL; RAMAN-SPECTROSCOPY; PHONON TRANSPORT; HEAT; SCATTERING; FILMS; SI; SEMICONDUCTORS; CRYSTALS; SPECTRUM;
D O I
10.1063/1.4767456
中图分类号
O59 [应用物理学];
学科分类号
摘要
A two-step metal assisted chemical etching technique is used to systematically vary the sidewall roughness of Si nanowires in vertically aligned arrays. The thermal conductivities of nanowire arrays are studied using time domain thermoreflectance and compared to their high-resolution transmission electron microscopy determined roughness. The thermal conductivity of nanowires with small roughness is close to a theoretical prediction based on an upper limit of the mean-free-paths of phonons given by the nanowire diameter. The thermal conductivity of nanowires with large roughness is found to be significantly below this prediction. Raman spectroscopy reveals that nanowires with large roughness also display significant broadening of the one-phonon peak; the broadening correlates well with the reduction in thermal conductivity. The origin of this broadening is not yet understood, as it is inconsistent with phonon confinement models, but could derive from microstructural changes that affect both the optical phonons observed in Raman scattering and the acoustic phonons that are important for heat conduction. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767456]
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Thermal Conductivity Measurement of Graphene Exfoliated on Silicon Dioxide
    Seol, Jae Hun
    Moore, Arden L.
    Shi, Li
    Jo, Insun
    Yao, Zhen
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2011, 133 (02):
  • [32] Core-Shell Heterojunction Solar Cells Based on Disordered Silicon Nanowire Arrays
    Togonal, Alienor Svietlana
    Foldyna, Martin
    Chen, Wanghua
    Wang, Jian Xiong
    Neplokh, Vladimir
    Tchernycheva, Maria
    Nassar, Joaquim
    Roca i Cabarrocas, Pere
    Rusli
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (05) : 2962 - 2972
  • [33] Thermal conductivity modeling of micro- and nanoporous silicon
    Liu, Liang-Chun
    Huang, Mei-Jiau
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (09) : 1547 - 1554
  • [34] Mechanotunable optical filters based on stretchable silicon nanowire arrays
    Kim, Yeong Jae
    Yoo, Young Jin
    Kang, Min Hyung
    Ko, Joo Hwan
    Park, Mi Rim
    Yoo, Dong Eun
    Lee, Dong Wook
    Kim, Kyujung
    Kang, Il-Suk
    Song, Young Min
    NANOPHOTONICS, 2020, 9 (10) : 3287 - 3293
  • [35] Preparation of Silicon Nanowire Arrays via Electroless Metal Deposition
    Liu, Xuan
    Hu, Qingsong
    INEC: 2010 3RD INTERNATIONAL NANOELECTRONICS CONFERENCE, VOLS 1 AND 2, 2010, : 85 - 86
  • [36] Aluminium nanopillars reduce thermal conductivity of silicon nanobeams
    Anufriev, R.
    Yanagisawa, R.
    Nomura, M.
    NANOSCALE, 2017, 9 (39) : 15083 - 15088
  • [37] Temperature Dependence of the Thermal Conductivity of Thin Silicon Nanowires
    Donadio, Davide
    Galli, Giulia
    NANO LETTERS, 2010, 10 (03) : 847 - 851
  • [38] Thermal conductivity of silicon nanowires embedded on thermoelectric platforms
    Choi, JinYong
    Cho, Kyoungah
    Yoon, Dae Sung
    Kim, Sangsig
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2016, 27 (10)
  • [39] Morphological Dependence of Field Emission Properties of Silicon Nanowire Arrays
    Sahoo, Sumanta Kumar
    Marikani, Arumugam
    NANO, 2016, 11 (02)
  • [40] Porous Silicon Nanowire Arrays for Reversible Optical Gas Sensing
    Georgobiani, Veronika A.
    Gonchar, Kirill A.
    Zvereva, Elena A.
    Osminkina, Liubov A.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2018, 215 (01):