Thermal conductivity of silicon nanowire arrays with controlled roughness

被引:114
|
作者
Feser, Joseph P. [1 ,2 ]
Sadhu, Jyothi S. [3 ]
Azeredo, Bruno P. [3 ]
Hsu, Keng H. [3 ]
Ma, Jun [3 ]
Kim, Junhwan [3 ]
Seong, Myunghoon [3 ]
Fang, Nicholas X. [4 ]
Li, Xiuling [5 ]
Ferreira, Placid M. [3 ]
Sinha, Sanjiv [3 ]
Cahill, David G. [1 ,2 ]
机构
[1] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Mech Engn, Urbana, IL 61801 USA
[4] MIT, Dept Mech Engn, Boston, MA 02139 USA
[5] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
THERMOELECTRIC-MATERIAL; RAMAN-SPECTROSCOPY; PHONON TRANSPORT; HEAT; SCATTERING; FILMS; SI; SEMICONDUCTORS; CRYSTALS; SPECTRUM;
D O I
10.1063/1.4767456
中图分类号
O59 [应用物理学];
学科分类号
摘要
A two-step metal assisted chemical etching technique is used to systematically vary the sidewall roughness of Si nanowires in vertically aligned arrays. The thermal conductivities of nanowire arrays are studied using time domain thermoreflectance and compared to their high-resolution transmission electron microscopy determined roughness. The thermal conductivity of nanowires with small roughness is close to a theoretical prediction based on an upper limit of the mean-free-paths of phonons given by the nanowire diameter. The thermal conductivity of nanowires with large roughness is found to be significantly below this prediction. Raman spectroscopy reveals that nanowires with large roughness also display significant broadening of the one-phonon peak; the broadening correlates well with the reduction in thermal conductivity. The origin of this broadening is not yet understood, as it is inconsistent with phonon confinement models, but could derive from microstructural changes that affect both the optical phonons observed in Raman scattering and the acoustic phonons that are important for heat conduction. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767456]
引用
收藏
页数:7
相关论文
共 50 条
  • [11] Thermal conductivity reduction in silicon fishbone nanowires
    Maire, Jeremie
    Anufriev, Roman
    Hori, Takuma
    Shiomi, Junichiro
    Volz, Sebastian
    Nomura, Masahiro
    SCIENTIFIC REPORTS, 2018, 8
  • [12] High Thermal Conductivity Nanocomposites Based on Conductive Polyaniline Nanowire Arrays on Boron Nitride
    Bai, Yufeng
    Han, Weifang
    Ge, Chunhua
    Liu, Rui
    Zhang, Rui
    Wang, Lixia
    Zhang, Xiangdong
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2019, 304 (12)
  • [14] Phonon thermal conductivity in silicon nanowires: The effects of surface roughness at low temperatures
    Oh, Jung Hyun
    Shin, Mincheol
    Jang, Moon-Gyu
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (04)
  • [15] Effects of nanoscale size dependent parameters on lattice thermal conductivity in Si nanowire
    Omar, M. S.
    Taha, H. T.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2010, 35 (02): : 177 - 193
  • [16] Single Nanowire Thermal Conductivity Measurements by Raman Thermography
    Doerk, Gregory S.
    Carraro, Carlo
    Maboudian, Roya
    ACS NANO, 2010, 4 (08) : 4908 - 4914
  • [17] Doping controlled roughness and defined mesoporosity in chemically etched silicon nanowires with tunable conductivity
    McSweeney, W.
    Lotty, O.
    Mogili, N. V. V.
    Glynn, C.
    Geaney, H.
    Tanner, D.
    Holmes, J. D.
    O'Dwyer, C.
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (03)
  • [18] Effects of vacancy defects location on thermal conductivity of silicon nanowire: a molecular dynamics study
    Meem, Asma Ul Hosna
    Chowdhury, Ongira
    Morshed, A. K. M. M.
    MICRO & NANO LETTERS, 2018, 13 (08): : 1146 - 1150
  • [19] Temperature and structure size dependence of the thermal conductivity of porous silicon
    de Boor, J.
    Kim, D. S.
    Ao, X.
    Hagen, D.
    Cojocaru, A.
    Foell, H.
    Schmidt, V.
    EPL, 2011, 96 (01)
  • [20] Strain- and Defect-Mediated Thermal Conductivity in Silicon Nanowires
    Murphy, Kathryn F.
    Piccione, Brian
    Zanjani, Mehdi B.
    Lukes, Jennifer R.
    Gianola, Daniel S.
    NANO LETTERS, 2014, 14 (07) : 3785 - 3792